Extrapolation algorithms and Pade´ approximations: a historical survey

In numerical analysis there are many methods producing sequences. Such is the case of iterative methods, of methods involving series expansions, of discretization methods, that is methods depending on a parameter such that the approximate solution tends to the exact one when the parameter tends to zero, of perturbation methods, etc. Sometimes, the convergence of these sequences is so slow that their effective use is quite limited. The aim of extrapolation methods is to construct a new sequence converging to the same limit faster than the initial one. Among these methods, the most well known are certainly Richardson's extrapolation algorithm and Aitken's gD2 process. In many branches of applied sciences, the solution of a given problem is often obtained as a power series expansion. The question is then trying to approximate the function from its series expansion. A possible answer is to construct a rational function whose series expansion matches the original one as far as possible. Such rational functions are called Pade approximants. These two subjects, which have some connections, go quite deep and far into the history of mathematics. They are related to continued fractions (a field which goes back to the Greek antiquity), orthogonal polynomials, the moment problem, etc., they played an important role in the development of mathematics (such as the transcendence of e and π) and they have many applications. This paper will give a short historical overview of these two subjects. Of course, we do not pretend to be exhaustive nor even to quote every important contribution. We refer the interested reader to the literature and, in particular, to the recent books [5,22,29,24,38,46,48,68,78,131]. For an extensive bibliography, see [23].

[1]  J. Delahaye Automatic selection of sequence transformations , 1981 .

[2]  Robert Vichnevetsky,et al.  Numerical mathematics and applications , 1986 .

[3]  Ernst Joachim Weniger,et al.  Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series , 1989 .

[4]  Haakon Waadeland,et al.  Continued fractions with applications , 1994 .

[5]  H. Rutishauser Der Quotienten-Differenzen-Algorithmus , 1954 .

[6]  A. Sidi On a generalization of the Richardson extrapolation process , 1990 .

[7]  Charles Hermite,et al.  Œuvres de Charles Hermite: Sur la fonction exponentielle , 1874 .

[8]  H. Sadok Quasilinear vector extrapolation methods , 1993 .

[9]  J. V. Iseghem VECTOR PADÉ APPROXIMANTS , 1986 .

[10]  Encyclopédie des Sciences Mathématiques pures et appliquées , 1910 .

[11]  C. Brezinski Biorthogonality and its Applications to Numerical Analysis , 1991 .

[12]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .

[13]  J. V. Iseghem Convergence of vectorial sequences: applications , 1994 .

[14]  G. Cantor,et al.  Ein Beitrag zur Mannigfaltigkeitslehre. , 1878 .

[15]  Hélène Lavastre On the stochastic acceleration of sequences of random variables , 1994 .

[16]  Eduard L. Stiefel,et al.  Altes und Neues über numerische Quadratur , 1961 .

[17]  R. Varga,et al.  Zeros of Sections of Power Series , 1983 .

[18]  Khalide Jbilou,et al.  Some results about vector extrapolation methods and related fixed-point iterations , 1991 .

[19]  Lothar Collatz,et al.  Numerische Behandlung von Differentialgleichungen , 1948 .

[20]  W. Sheppard Some Quadrature‐Formulæ , 1900 .

[21]  J. Stoer,et al.  Numerical treatment of ordinary differential equations by extrapolation methods , 1966 .

[22]  K. Kommerell Das Grenzgebiet der elementaren und höheren Mathematik , 1937 .

[23]  G. Marchuk,et al.  Difference Methods and Their Extrapolations , 1983 .

[24]  V. N. Sorokin,et al.  Rational Approximations and Orthogonality , 1991 .

[25]  T. Stieltjes,et al.  Sur la réduction en fraction continue d'une série procédant suivant les puissances descendantes d'une variable , 1889 .

[26]  Vilmos Totik,et al.  General Orthogonal Polynomials , 1992 .

[27]  G. A. Baker APPLICATION OF THE PADE APPROXIMANT METHOD TO THE INVESTIGATION OF SOME MAGNETIC PROPERTIES OF THE ISING MODEL , 1961 .

[28]  J. V. Iseghem Vector orthogonal relations. Vector QD-algorithm , 1987 .

[29]  C. Brezinski THE GENERALIZATIONS OF NEWTON'S INTERPOLATION FORMULA DUE TO M ¨ UHLBACH AND ANDOYER , 1994 .

[30]  P. R. Graves-Morris,et al.  Vector valued rational interpolants I. , 1983 .

[31]  Avram Sidi,et al.  An algorithm for a generalization of the Richardson extrapolation process , 1987 .

[32]  S. Shah,et al.  Summability theory and its applications , 1972 .

[33]  C. Brezinski Generalisations de la transformation de shanks, de la table de Pade et de l'ε-algorithme , 1975 .

[34]  H. L. Gray,et al.  Higher Order G-Transformation , 1971 .

[35]  B. M. Fulk MATH , 1992 .

[36]  David Levin,et al.  Development of non-linear transformations for improving convergence of sequences , 1972 .

[37]  G. D. Taylor,et al.  Lower estimates for the error of best uniform approximation , 1976 .

[38]  C. Brezinski,et al.  Convergence Acceleration by Extraction of Linear Subsequences , 1983 .

[39]  H. Rutishauser,et al.  Ausdehnung des Rombergschen Prinzips , 1963 .

[40]  William F. Ames,et al.  Numerical and applied mathematics , 1989 .

[41]  B. Burrows,et al.  Lower bounds for quartic anharmonic and double‐well potentials , 1993 .

[42]  A. Draux Polynômes orthogonaux formels : applications , 1983 .

[43]  D. Burley Some magnetic properties of the ising model , 1960 .

[44]  Claude Brezinski,et al.  Quasi-Linear Extrapolation Processes , 1988 .

[45]  A. Pinkus On L[1]-approximation , 1991 .

[46]  C. Brezinski General orthogonal polynomials , 1980 .

[47]  Claude Brezinski,et al.  Sequences of transformations and triangular recursion schemes, with applications in numerical analysis , 1991 .

[48]  Claude Brezinski,et al.  A general extrapolation algorithm , 1980 .

[49]  E. Gekeler,et al.  On the solution of systems of equations by the epsilon algorithm of Wynn , 1972 .

[50]  R. J. Schmidt XXXII. On the numerical solution of linear simultaneous equations by an iterative method , 1941 .

[51]  Adhemar Bultheel,et al.  Laurent Series and their Padé Approximations , 1987 .

[52]  Marc Prévost,et al.  Acceleration property for the E-algorithm and an application to the summation of series , 1994, Adv. Comput. Math..

[53]  T. Stieltjes Recherches sur les fractions continues , 1995 .

[54]  Claus Schneider,et al.  Vereinfachte Rekursionen zur Richardson-Extrapolation in Spezialfällen , 1975 .

[55]  P. Wynn,et al.  On a Procrustean technique for the numerical transformation of slowly convergent sequences and series , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[56]  N. Kryloff,et al.  On Rayleigh's Principle in the Theory of Differential Equations of Mathematical Physics and on Euler's Method in Calculus of Variations , 1927 .

[57]  Claude Brezinski,et al.  Extrapolation methods - theory and practice , 1993, Studies in computational mathematics.

[58]  C. Brezinski,et al.  Construction of extrapolation processes , 1991 .

[59]  Jacek Gilewicz,et al.  Approximants de Padé , 1978 .

[60]  R. Pennacchi,et al.  Le trasformazioni razionali di una successione , 1968 .

[61]  E. Hairer,et al.  Stiff and differential-algebraic problems , 1991 .

[62]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[63]  Walter Van Assche,et al.  Asymptotics for Orthogonal Polynomials , 1987 .

[64]  P. Wynn,et al.  Sequence Transformations and their Applications. , 1982 .

[65]  J. Pryce Numerical Solution of Sturm-Liouville Problems , 1994 .

[66]  Claude Brezinski,et al.  A general extrapolation procedure revisited , 1994, Adv. Comput. Math..

[67]  Carsten Carstensen,et al.  On a general epsilon algorithm , 1989 .

[68]  Guido Walz The History of Extrapolation Methods in Numerical Analysis , 1991 .

[69]  Edward B. Saff,et al.  Strong Asymptotics for Extremal Polynomials Associated With Weights on Ir , 1988 .

[70]  Jacques Dutka,et al.  Richardson extrapolation and Romberg integration , 1984 .

[71]  Claude Brezinski,et al.  The solution of systems of equations using the -algorithm, and an application to boundary-value problems , 1974 .

[72]  C. Brezinski Error Control in Convergence Acceleration Processes , 1983 .

[73]  Montessus de Ballore,et al.  Sur les fractions continues algébriques , 1902 .

[74]  Ana C. Matos Acceleration methods based on convergence tests , 1990 .

[75]  A. Sidi Extrapolation vs. projection methods for linear systems of equations , 1988 .

[76]  Moulay Driss Benchiboun Etude de certaines généralisations du procédé d'Aitken et comparaison de procédés d'accélération de la convergence , 1987 .

[77]  André Draux,et al.  Polynomes Orthogonaux-Formels , 1983 .

[78]  B. Germain-Bonne,et al.  Résultats négatifs en accélération de la convergence , 1980 .

[79]  T. Håvie,et al.  Generalized neville type extrapolation schemes , 1979 .

[80]  P. Wynn,et al.  On a Device for Computing the e m (S n ) Transformation , 1956 .

[81]  W. J. Thron,et al.  Continued Fractions: Analytic Theory and Applications , 1984 .

[82]  L. Richardson,et al.  The Deferred Approach to the Limit. Part I. Single Lattice. Part II. Interpenetrating Lattices , 1927 .

[83]  Heinz Rutishauser,et al.  Bestimmung der Eigenwerte und Eigenvektoren einer Matrix mit Hilfe des Quotienten-Differenzen-Algorithmus , 1955 .

[84]  Claude Brezinski,et al.  A New Approach to Convergence Acceleration Methods , 1988 .

[85]  S. Lubkin,et al.  A method of summing infinite series , 1952 .

[86]  Mourad E. H. Ismail,et al.  Orthogonal polynomials : theory and practice , 1990 .

[87]  F. Cordellier,et al.  Démonstration algébrique de l'extension de l'identité de Wynn aux tables de Padé non normales , 1979 .

[88]  B. Germain-Bonne,et al.  Brève communication. Transformations de suites , 1973 .

[89]  H. Padé Sur la représentation approchée d'une fonction par des fractions rationnelles , 1892 .

[90]  P. Wynn,et al.  Acceleration techniques for iterated vector and matrix problems : (mathematics of computation, _1_6(1962), nr 79, p 301-322) , 1962 .

[91]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[92]  P. Wynn Singular rules for certain non-linear algorithms : (bit, nordisk tidskrift for informations-behandling, _3(1963), p 175-195) , 1963 .

[93]  C. Brezinski Composite sequence transformations , 1985 .

[94]  D. C. Joyce Survey of Extrapolation Processes in Numerical Analysis , 1971 .

[95]  A. C. Aitken XXV.—On Bernoulli's Numerical Solution of Algebraic Equations , 1927 .

[96]  Claude Brezinski,et al.  Continued fractions and Padé approximants , 1990 .

[97]  K. Overholt Extended Aitken acceleration , 1965 .

[98]  F. Lindemann Ueber die Zahl π.*) , 1882 .

[99]  C. Brezinski,et al.  A breakdown-free Lanczos type algorithm for solving linear systems , 1992 .

[100]  Daniel Shanks An Analogy Between Transients and Mathematical Sequences and Some Nonlinear Sequence-to-Sequence Transforms Suggested by It. Part 1 , 1949 .

[101]  Ana C. MatosLaboratoire A Derivation of Extrapolation Algorithms Based on Error Estimates , 1993 .

[102]  J. Delahaye,et al.  Sequence Transformations , 1988 .

[103]  A. Berlinet Sequence transformations as statistical tools , 1985 .

[104]  E. M. Milne Extension of Huygens’ Approximation to a Circular arc , 1903, The Mathematical Gazette.

[105]  D. Lubinsky Strong asymptotics for extremal errors and polynomials associated with Erdös-type weights , 1989 .

[106]  D. Shanks Non‐linear Transformations of Divergent and Slowly Convergent Sequences , 1955 .

[107]  G. S. Rushbrooke,et al.  Eigenvalues of differential equations by finite-difference methods , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[108]  William B. Gragg,et al.  On Extrapolation Algorithms for Ordinary Initial Value Problems , 1965 .

[109]  M. Gutknecht The Unsymmetric Lanczos Algorithms And Their Relations To Pad ' E Approximation, Continued Fractions , 1990 .

[110]  Annie Cuyt,et al.  Nonlinear Methods in Numerical Analysis , 1987 .