Bivariate complexity analysis of Almost Forest Deletion

Abstract In this paper we study a generalization of classic Feedback Vertex Set problem in the realm of multivariate complexity analysis. We say that a graph F is an l-forest if we can delete at most l edges from F to get a forest. That is, F is at most l edges away from being a forest. In this paper we introduce the Almost Forest Deletion problem, where given a graph G and integers k and l, the question is whether there exists a subset of at most k vertices such that its deletion leaves us an l-forest. We show that this problem admits an algorithm with running time 2 O ( k + l ) n O ( 1 ) and a kernel of size O ( k l ( k + l ) ) . We also show that the problem admits a 2 O ( tw ) n O ( 1 ) algorithm on bounded treewidth graphs, using which we design a subexponential algorithm for the problem on planar graphs.

[1]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[2]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[3]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[4]  Rolf Niedermeier,et al.  A Structural View on Parameterizing Problems: Distance from Triviality , 2004, IWPEC.

[5]  Christian Komusiewicz,et al.  Deconstructing intractability - A multivariate complexity analysis of interval constrained coloring , 2011, J. Discrete Algorithms.

[6]  Bruce A. Reed,et al.  A Simpler Linear Time Algorithm for Embedding Graphs into an Arbitrary Surface and the Genus of Graphs of Bounded Tree-Width , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[7]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[8]  Erik D. Demaine,et al.  Linearity of grid minors in treewidth with applications through bidimensionality , 2008, Comb..

[9]  Hisao Tamaki,et al.  Improved Bounds on the Planar Branchwidth with Respect to the Largest Grid Minor Size , 2010, ISAAC.

[10]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[11]  Robin Thomas,et al.  Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.

[12]  Michael R. Fellows,et al.  The Complexity Ecology of Parameters: An Illustration Using Bounded Max Leaf Number , 2007, CiE.

[13]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[14]  Omid Amini,et al.  Implicit branching and parameterized partial cover problems , 2011, J. Comput. Syst. Sci..

[15]  Fedor V. Fomin,et al.  Subexponential algorithms for partial cover problems , 2011, Inf. Process. Lett..

[16]  Michal Pilipczuk,et al.  Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[17]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[18]  Christophe Paul,et al.  Linear Kernels and Single-Exponential Algorithms Via Protrusion Decompositions , 2012, ICALP.

[19]  Arie M. C. A. Koster,et al.  Combinatorial Optimization on Graphs of Bounded Treewidth , 2008, Comput. J..

[20]  Fedor V. Fomin,et al.  Hitting Forbidden Minors: Approximation and Kernelization , 2010, SIAM J. Discret. Math..

[21]  James R. Lee,et al.  Improved Approximation Algorithms for Minimum Weight Vertex Separators , 2008, SIAM J. Comput..

[22]  Stéphan Thomassé,et al.  A 4k2 kernel for feedback vertex set , 2010, TALG.

[23]  Fedor V. Fomin,et al.  Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[24]  Michael R. Fellows,et al.  Graph Layout Problems Parameterized by Vertex Cover , 2008, ISAAC.

[25]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[26]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[29]  Fedor V. Fomin,et al.  Subexponential algorithms for partial cover problems , 2011, Inf. Process. Lett..

[30]  T. Gallai Maximum-Minimum Sätze und verallgemeinerte Faktoren von Graphen , 1964 .

[31]  Fahad Panolan,et al.  Efficient Computation of Representative Families with Applications in Parameterized and Exact Algorithms , 2016, J. ACM.

[32]  Michael R. Fellows,et al.  Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity , 2013, Eur. J. Comb..

[33]  James G. Oxley,et al.  Matroid theory , 1992 .

[34]  Marcin Pilipczuk,et al.  Faster deterministic Feedback Vertex Set , 2013, Inf. Process. Lett..