Entanglement-enhanced time-continuous quantum control in optomechanics

The cavity-optomechanical radiation pressure interaction provides the means to create entanglement between a mechanical oscillator and an electromagnetic field interacting with it. Here we show how we can utilize this entanglement within the framework of time-continuous quantum control, in order to engineer the quantum state of the mechanical system. Specifically, we analyze how to prepare a low-entropy mechanical state by (measurement-based) feedback cooling operated in the blue detuned regime, the creation of bipartite mechanical entanglement via time-continuous entanglement swapping, and preparation of a squeezed mechanical state by time-continuous teleportation. The protocols presented here are feasible in optomechanical systems exhibiting a cooperativity larger than 1.

[1]  G. Milburn,et al.  Nanomechanical squeezing with detection via a microwave cavity , 2008, 0803.1757.

[2]  James S. Harris,et al.  Tables of integrals , 1998 .

[3]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[4]  M. Pinard,et al.  Cooling of a Mirror by Radiation Pressure , 1999 .

[5]  K. Thorne,et al.  Quantum Nondemolition Measurements , 1980, Science.

[6]  Alexander L. Fradkov,et al.  Physics and Control , 1999 .

[7]  V. P. Belavkin,et al.  Optimal Quantum Filtering and Quantum Feedback Control , 2005 .

[8]  A. Clerk,et al.  Back-action evasion and squeezing of a mechanical resonator using a cavity detector , 2008, 0802.1842.

[9]  Alberto Barchielli,et al.  Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case , 2009 .

[10]  Jie Xiong,et al.  An Introduction to Stochastic Filtering Theory , 2008 .

[11]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[12]  V. Sudhir,et al.  Measurement-based control of a mechanical oscillator at its thermal decoherence rate , 2014, Nature.

[13]  Markus Aspelmeyer,et al.  Time-continuous Bell measurements. , 2013, Physical review letters.

[14]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[15]  T. Palomaki,et al.  Entangling Mechanical Motion with Microwave Fields , 2013, Science.

[16]  Tobias J. Kippenberg,et al.  Measurement and control of a mechanical oscillator at its thermal decoherence rate 1 DALZIEL WILSON, VIVISHEK SUDHIR, NICOLAS PIRO, , 2014 .

[17]  T J Kippenberg,et al.  Theory of ground state cooling of a mechanical oscillator using dynamical backaction. , 2007, Physical review letters.

[18]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[19]  V. P. Belavkin,et al.  On the duality of quantum filtering and optimal feedback control in quantum open linear dynamical systems , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).

[20]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[21]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[22]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[23]  Graham,et al.  Linear stochastic wave equations for continuously measured quantum systems. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[24]  Sylvain Gigan,et al.  Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes , 2007, 0705.1728.

[25]  A. Tustin Automatic Control , 1951, Nature.

[26]  Ramon van Handel,et al.  On the separation principle of quantum control , 2005 .

[27]  J. Crank Tables of Integrals , 1962 .

[28]  H. Carmichael An open systems approach to quantum optics , 1993 .

[29]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[30]  Carmichael,et al.  Quantum trajectory theory for cascaded open systems. , 1993, Physical review letters.

[31]  M. Aspelmeyer,et al.  Quantum entanglement and teleportation in pulsed cavity optomechanics , 2011, 1108.2586.

[32]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[33]  Peter Zoller,et al.  Quantum Noise in Quantum Optics: the Stochastic Schrödinger Equation , 1997 .

[34]  M. Aspelmeyer,et al.  Squeezed light from a silicon micromechanical resonator , 2013, Nature.

[35]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[36]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[37]  D. Stamper-Kurn,et al.  Observation of quantum-measurement backaction with an ultracold atomic gas , 2007, 0706.1005.

[38]  P. Tombesi,et al.  Robust entanglement of a micromechanical resonator with output optical fields , 2008, 0806.2045.

[39]  V. P. Belavkin,et al.  Quantum stochastic calculus and quantum nonlinear filtering , 1992 .

[40]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[41]  Thierry Botter,et al.  Non-classical light generated by quantum-noise-driven cavity optomechanics , 2012, Nature.

[42]  Michael Seadle Measurement , 2007, The Measurement of Information Integrity.

[43]  Antoine Heidmann,et al.  Quantum locking of mirrors in interferometers. , 2003, Physical review letters.

[44]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[45]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[46]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[47]  W. Marsden I and J , 2012 .

[48]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[49]  Florian Marquardt,et al.  Quantum theory of cavity-assisted sideband cooling of mechanical motion. , 2007, Physical review letters.

[50]  C. Simon,et al.  Quantum optomechanics in the bistable regime , 2011, 1104.4145.

[51]  Ryan Hamerly,et al.  Coherent controllers for optical-feedback cooling of quantum oscillators , 2012, 1206.2688.

[52]  V. P. Belavkin,et al.  Measurement, filtering and control in quantum open dynamical systems , 1999 .

[53]  A. Dąbrowska,et al.  Belavkin filtering with squeezed light sources , 2014, 1405.7795.

[54]  H J Mamin,et al.  Feedback cooling of a cantilever's fundamental mode below 5 mK. , 2007, Physical review letters.

[55]  M. Plenio Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.

[56]  Stefano Mancini,et al.  Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback , 1998 .

[57]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[58]  Wiseman,et al.  Using feedback to eliminate back-action in quantum measurements. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[59]  C. Regal,et al.  Observation of Radiation Pressure Shot Noise on a Macroscopic Object , 2012, Science.

[60]  A. Clerk,et al.  Two-mode back-action-evading measurements in cavity optomechanics , 2013, 1304.4059.

[61]  F. Khalili,et al.  Quantum nondemolition measurements: the route from toys to tools , 1996 .

[62]  Claus Kiefer,et al.  Quantum Measurement and Control , 2010 .

[63]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[64]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[65]  Jan Meijer,et al.  High-fidelity spin entanglement using optimal control , 2013, Nature Communications.

[66]  V. Sandberg,et al.  Quantum nondemolition measurements of harmonic oscillators , 1978 .