Changes in the structural dimensionality of selenidostannates in ionic liquids: formation, structures, stability, and photoconductivity.

In situ transformations of selenidostannate frameworks in ionic liquids (ILs) were initiated by treatment of the starting phase K2[Sn2Se5] and the consecutive reaction products by means of temperature increase and/or amine addition. Along the reaction pathway, the framework dimensionalities of the five involved selenidostannate anions develop from 3D to 1D and back, both in top-down and bottom-up style. Addition of ethane-1,2-diamine (en) led to the reversion of the 2D→1D step from 2D-{[Sn24Se56](16-)} to 1D-{[Sn6Se14](4-)}. As rationalized by DFT investigations, the 2D anion is thermodynamically favored. Photoconductivity measurements reveal that all samples show Schottky contact behavior with absolute thresholds below 10 V. One of the samples exhibits conductive states within the energy range of visible photons.

[1]  Xiaoying Huang,et al.  From selenidostannates to silver-selenidostannate: structural variation of chalcogenidometallates synthesized in ionic liquids. , 2013, Chemical communications.

[2]  S. Dehnen,et al.  From Simple Chalcogenidotetrelate Precursors to Complex Structures and Functional Compounds , 2012 .

[3]  S. Dehnen,et al.  Controlling the assembly of chalcogenide anions in ionic liquids: from binary Ge/Se through ternary Ge/Sn/Se to binary Sn/Se frameworks. , 2012, Chemistry.

[4]  M. Tong,et al.  Single-crystal-to-single-crystal transformation from 1 D staggered-sculls chains to 3 D NbO-type metal-organic framework through [2+2] photodimerization. , 2012, Chemistry.

[5]  B. Roling,et al.  New Lithium Chalcogenidotetrelates, LiChT: Synthesis and Characterization of the Li+-Conducting Tetralithium ortho-Sulfidostannate Li4SnS4 , 2012 .

[6]  Xiaoying Huang,et al.  Largest discrete supertetrahedral clusters synthesized in ionic liquids , 2012 .

[7]  S. Dehnen,et al.  "Zeoball" [Sn36Ge24Se132]24-: a molecular anion with zeolite-related composition and spherical shape. , 2012, Journal of the American Chemical Society.

[8]  Ling Wu,et al.  Layered indium chalcogenidoantimonates [Me2NH2]2In2Sb2S7-xSex (x = 0, 2.20, 4.20, 7) with tunable band gaps and photocatalytic properties , 2012 .

[9]  E. Ahmed,et al.  Homo- and heteroatomic polycations of groups 15 and 16. Recent advances in synthesis and isolation using room temperature ionic liquids , 2011 .

[10]  Xiaoying Huang,et al.  Crystalline open-framework selenidostannates synthesized in ionic liquids. , 2011, Angewandte Chemie.

[11]  M. Wolff,et al.  Ionische Flüssigkeiten – neue Perspektiven für die anorganische Synthesechemie? , 2011 .

[12]  C. Feldmann,et al.  Ionic liquids: new perspectives for inorganic synthesis? , 2011, Angewandte Chemie.

[13]  J. Vittal,et al.  Solid-state structural transformations from 2D interdigitated layers to 3D interpenetrated structures. , 2011, Angewandte Chemie.

[14]  E. Ahmed,et al.  Chemistry of polynuclear transition-metal complexes in ionic liquids. , 2011, Dalton transactions.

[15]  G. Guo,et al.  Different effects of a cotemplate and [(transition-metal)(1,10-phenanthroline)(m)]2+ (m = 1-3) complex cations on the self-assembly of a series of hybrid selenidostannates showing combined optical properties of organic and inorganic components. , 2011, Inorganic chemistry.

[16]  C. Vollmer,et al.  Naked metal nanoparticles from metal carbonyls in ionic liquids: Easy synthesis and stabilization , 2011 .

[17]  S. Dehnen,et al.  [BMIm]4[Sn9Se20]: ionothermal synthesis of a selenidostannate with a 3D open-framework structure. , 2011, Inorganic chemistry.

[18]  C. Hu,et al.  Stepwise synthesis of metal-organic frameworks: replacement of structural organic linkers. , 2011, Journal of the American Chemical Society.

[19]  P. Feng,et al.  Phase selection and site-selective distribution by tin and sulfur in supertetrahedral zinc gallium selenides. , 2011, Journal of the American Chemical Society.

[20]  Xian‐Ming Zhang,et al.  Solvent induced molecular magnetic changes observed in single-crystal-to-single-crystal transformation. , 2011, Dalton transactions.

[21]  T. White,et al.  Hydrazine-hydrothermal method to synthesize three-dimensional chalcogenide framework for photocatalytic hydrogen generation , 2010 .

[22]  P. Chatterjee,et al.  Single crystal-to-single crystal irreversible transformation from a discrete vanadium(V)-alcoholate to an aldehydic-vanadium(IV) oligomer. , 2010, Journal of the American Chemical Society.

[23]  M. Kanatzidis,et al.  Synthesis in ionic liquids: [Bi2Te2Br](AlCl4), a direct gap semiconductor with a cationic framework. , 2010, Journal of the American Chemical Society.

[24]  P. Feng,et al.  Largest molecular clusters in the supertetrahedral Tn series. , 2010, Journal of the American Chemical Society.

[25]  P. Vaqueiro Hybrid materials through linkage of chalcogenide tetrahedral clusters. , 2010, Dalton transactions.

[26]  M. Koch,et al.  Clustering effects in Ga(AsBi) , 2010 .

[27]  M. Kanatzidis,et al.  Selective incarceration of caesium ions by Venus flytrap action of a flexible framework sulfide. , 2010, Nature chemistry.

[28]  Xiqing Wang,et al.  Synthetic control of selenide supertetrahedral clusters and three-dimensional co-assembly by charge-complementary metal cations. , 2009, Angewandte Chemie.

[29]  G. Jin,et al.  Extending rectangular metal-organic frameworks to the third dimension: discrete organometallic boxes for reversible trapping of halocarbons occurring with conservation of the lattice. , 2009, Angewandte Chemie.

[30]  M. Kanatzidis,et al.  Chalcogenide chemistry in ionic liquids: nonlinear optical wave-mixing properties of the double-cubane compound [Sb7S8Br2](AlCl4)3. , 2009, Journal of the American Chemical Society.

[31]  Russell E Morris,et al.  Ionothermal synthesis--ionic liquids as functional solvents in the preparation of crystalline materials. , 2009, Chemical communications.

[32]  J. Dai,et al.  Solvothermal synthesis of Group 13–15 chalcogenidometalates with chelating organic amines , 2009 .

[33]  B. Roling,et al.  Inorganic frameworks from selenidotetrelate anions [T2Se6]4- (T = Ge, Sn): synthesis, structures, and ionic conductivity of [K2(H2O)3][MnGe4Se10] and (NMe4)2[MSn4Se10] (M = Mn, Fe). , 2009, Inorganic chemistry.

[34]  Xiaoying Huang,et al.  Three-dimensional chiral microporous germanium antimony sulfide with ion-exchange properties. , 2008, Angewandte Chemie.

[35]  P. Feng,et al.  Three-dimensional open framework built from Cu-S icosahedral clusters and its photocatalytic property. , 2008, Journal of the American Chemical Society.

[36]  L. Cronin,et al.  "Bottom-up" meets "top-down" assembly in nanoscale polyoxometalate clusters: self-assembly of [P4W52O178](24-) and disassembly to [P3W39O134](19-). , 2008, Journal of the American Chemical Society.

[37]  F. W. Fowler,et al.  Single-crystal-to-single-crystal topochemical polymerizations by design. , 2008, Accounts of chemical research.

[38]  M. Kanatzidis,et al.  Importance of solution equilibria in the directed assembly of metal chalcogenide mesostructures. , 2008, Journal of the American Chemical Society.

[39]  M. Fujita,et al.  Direct observation of the labile imine formation through single-crystal-to-single-crystal reactions in the pores of a porous coordination network. , 2008, Journal of the American Chemical Society.

[40]  Russell E. Morris Ionische Flüssigkeiten und Mikrowellen: Synthese von Zeolithen für kommende Anwendungen , 2008 .

[41]  R. Morris Ionic liquids and microwaves--making zeolites for emerging applications. , 2008, Angewandte Chemie.

[42]  R. Morris,et al.  Anion control in the ionothermal synthesis of coordination polymers. , 2007, Journal of the American Chemical Society.

[43]  Russell E Morris,et al.  Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids. , 2007, Accounts of chemical research.

[44]  S. Dehnen,et al.  A coordination chemistry approach towards ternary M/14/16 anions , 2007 .

[45]  A. Slawin,et al.  Chiral induction in the ionothermal synthesis of a 3-D coordination polymer. , 2007, Journal of the American Chemical Society.

[46]  J. Dupont,et al.  Catalytic applications of metal nanoparticles in imidazolium ionic liquids. , 2007, Chemistry.

[47]  M. Kanatzidis,et al.  Heavy-metal-ion capture, ion-exchange, and exceptional acid stability of the open-framework chalcogenide (NH(4))(4)In(12)Se(20). , 2007, Chemistry.

[48]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[49]  S. Dehnen,et al.  Fine-tuning of optical properties with salts of discrete or polymeric, heterobimetallic telluride anions [M4micro4-Te)(SnTe4)4](10-) (M = Mn, Zn, Cd, Hg) and 3{[Hg4(micro4-Te)(SnTe4)3](6-)}. , 2006, Chemical communications.

[50]  Yuri Grin,et al.  A guest-free germanium clathrate , 2006, Nature.

[51]  M. Kanatzidis,et al.  Unique pore selectivity for Cs+ and exceptionally high NH4+ exchange capacity of the chalcogenide material K6Sn[Zn4Sn4S17]. , 2006, Journal of the American Chemical Society.

[52]  S. Dehnen,et al.  Influence of the Counterions on the Structures of Ternary Zn/Sn/Se Anions: Synthesis and Properties of [Rb10(H2O)14.5][Zn4(μ4‐Se)2(SnSe4)4] and [Ba5(H2O)32][Zn5Sn(μ3‐Se)4(SnSe4)4] , 2006 .

[53]  L. Nazar,et al.  Dimensional Reduction: Synthesis and Structure of Layered Li5M(PO4)2F2 (M = V, Cr) , 2006 .

[54]  S. Dehnen,et al.  Ternary Mn/Ge/Se anions from reactions of [Ba2(H2O)9][GeSe4]: synthesis and characterization of compounds containing discrete or polymeric [Mn6Ge4Se17]6- units. , 2005, Chemical communications.

[55]  K. Volz,et al.  Quantitative description of disorder parameters in (GaIn)(NAs) quantum wells from the temperature-dependent photoluminescence spectroscopy , 2005 .

[56]  Xiao-Ming Chen,et al.  Temperature- or guest-induced drastic single-crystal-to-single-crystal transformations of a nanoporous coordination polymer. , 2005, Journal of the American Chemical Society.

[57]  Xianhui Bu,et al.  Open-framework chalcogenides as visible-light photocatalysts for hydrogen generation from water. , 2005, Angewandte Chemie.

[58]  L. MacGillivray,et al.  A single-crystal-to-single-crystal transformation mediated by argentophilic forces converts a finite metal complex into an infinite coordination network. , 2005, Angewandte Chemie.

[59]  M. Kanatzidis,et al.  {Sn[Zn4Sn4S17]}6-: a robust open framework based on metal-linked penta-supertetrahedral [Zn4Sn4S17]10- clusters with ion-exchange properties. , 2005, Angewandte Chemie.

[60]  J. Vittal,et al.  Topochemical photodimerization in the coordination polymer [{(CF3CO2)(mu-O2CCH3)Zn}2(mu-bpe)2]n through single-crystal to single-crystal transformation. , 2005, Angewandte Chemie.

[61]  N. Zheng,et al.  The interface chemistry between chalcogenide clusters and open framework chalcogenides. , 2005, Accounts of chemical research.

[62]  T. Friščić,et al.  Single-crystal-to-single-crystal [2 + 2] photodimerizations: from discovery to design , 2005 .

[63]  Paul S. Wheatley,et al.  Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues , 2004, Nature.

[64]  N. Zheng,et al.  Tetrahedral chalcogenide clusters and open frameworks. , 2004, Chemistry.

[65]  Giannis S. Papaefstathiou,et al.  Coordination-driven self-assembly directs a single-crystal-to-single-crystal transformation that exhibits photocontrolled fluorescence. , 2004, Journal of the American Chemical Society.

[66]  M. P. Suh,et al.  A robust porous material constructed of linear coordination polymer chains: reversible single-crystal to single-crystal transformations upon dehydration and rehydration. , 2004, Angewandte Chemie.

[67]  Xianhui Bu,et al.  Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity , 2003, Nature.

[68]  S. Dehnen,et al.  Reactivity of chalcogenostannate compounds: syntheses, crystal structures, and electronic properties of novel compounds containing discrete ternary anions [MII4(mu4-Se)(SnSe4)4]10- (MII = Zn, Mn). , 2003, Journal of the American Chemical Society.

[69]  Xianhui Bu,et al.  Nonaqueous synthesis and selective crystallization of gallium sulfide clusters into three-dimensional photoluminescent superlattices. , 2003, Journal of the American Chemical Society.

[70]  Xianhui Bu,et al.  Microporous and Photoluminescent Chalcogenide Zeolite Analogs , 2002, Science.

[71]  G. Ackland Calculation of free energies from ab initio calculation , 2002 .

[72]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[73]  J. Long,et al.  Dimensional Reduction: A Practical Formalism for Manipulating Solid Structures , 2001 .

[74]  M. Kanatzidis,et al.  Redox-Induced “Zipper” Action in the Solid State. Unprecedented Single-Crystal to Single-Crystal to Single-Crystal Cascade Conversions in Cs3Bi7Se12. Framework Evolution from 2D to 2D‘ to 3D , 2000 .

[75]  P. Halasyamani,et al.  From Molecules to Frameworks: Variable Dimensionality in the UO2(CH3COO)2·2H2O/HF(aq)/Piperazine System. Syntheses, Structures, and Characterization of Zero-Dimensional (C4N2H12)UO2F4·3H2O, One-Dimensional (C4N2H12)2U2F12·H2O, Two-Dimensional (C4N2H12)2(U2O4F5)4·11H2O, and Three-Dimensional (C4N2H12 , 1999 .

[76]  D. Proserpio,et al.  Low temperature route towards new materials: solvothermal synthesis of metal chalcogenides in ethylenediamine , 1999 .

[77]  O. Yaghi,et al.  Supertetrahedral sulfide crystals with giant cavities and channels , 1999, Science.

[78]  G. Ozin,et al.  Modular assembly and phase study of two- and three-dimensional porous tin(IV) selenides , 1999 .

[79]  W. Sheldrick,et al.  Chalcogenidometalates of the heavier Group 14 and 15 elements , 1998 .

[80]  G. Ozin,et al.  Intermediates in the formation of microporous layered tin(IV) sulfide materials , 1998 .

[81]  G. Ackland,et al.  Practical methods in ab initio lattice dynamics , 1997 .

[82]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[83]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[84]  Geoffrey A. Ozin,et al.  Self‐Assembling Frameworks: Beyond microporous oxides , 1996 .

[85]  M. Kanatzidis,et al.  A New Metastable Three-Dimensional Bismuth Sulfide with Large Tunnels: Synthesis, Structural Characterization, Ion-Exchange Properties, and Reactivity of KBi3S5 , 1995 .

[86]  K. Klepp Darstellung und Kristallstruktur von K2Sn2S5 und K2Sn2Se5 / Preparation and Crystal Structure of K2Sn2S5 and K2Sn2Se5 , 1992 .

[87]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .