Random attractors of boussinesq equations with multiplicative noise

We study the random dynamical system (RDS) generated by the Benald flow problem with multiplicative noise and prove the existence of a compact random attractor for such RDS.

[1]  Q. Lu,et al.  Exponential attractor of the 3D derivative Ginzburg-Landau equation , 2008 .

[2]  Xiaoming Fan Random attractor for a damped sine-Gordon equation with white noise , 2004 .

[3]  Desheng Yang The asymptotic behavior of the stochastic Ginzburg–Landau equation with multiplicative noise , 2004 .

[4]  R. Sasaki,et al.  Solution of the dual reflection equation for An−1(1) solid-on-solid model , 2003, hep-th/0308118.

[5]  Ruin probabilities of a surplus process described by PDMPs , 2008 .

[6]  Roger Temam,et al.  Stochastic Burgers' equation , 1994 .

[7]  James C. Robinson Stability of random attractors under perturbation and approximation , 2002 .

[9]  Arnaud Debussche,et al.  Hausdorff dimension of a random invariant set , 1998 .

[10]  James C. Robinson,et al.  Upper semicontinuity of attractors for small random perturbations of dynamical systems , 1998 .

[11]  Guo Boling,et al.  Spectral method for solving two-dimensional Newton-Boussinesq equations , 1989 .

[12]  L. Arnold Random Dynamical Systems , 2003 .

[13]  Tomás Caraballo,et al.  Stability and random attractors for a reaction-diffusion equation with multiplicative noise , 2000 .

[14]  Guo Boling,et al.  Ill-Posedness for the Nonlinear Davey-Stewartson Equation , 2008 .

[15]  Yangrong Li,et al.  The asymptotic behavior of the stochastic Ginzburg-Landau equation with additive noise , 2008, Appl. Math. Comput..

[16]  H. Crauel,et al.  Attractors for random dynamical systems , 1994 .

[17]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[18]  Exponential Attractors for the Generalized Ginzburg-Landau Equation , 2000 .