GPU-accelerated preconditioned iterative linear solvers
暂无分享,去创建一个
[1] Yousef Saad,et al. ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..
[2] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[3] Jack Dongarra,et al. Numerical linear algebra on emerging architectures: The PLASMA and MAGMA projects , 2009 .
[4] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[5] Anant Agarwal,et al. The KILL Rule for Multicore , 2007, 2007 44th ACM/IEEE Design Automation Conference.
[6] Rajesh Bordawekar,et al. Optimizing Sparse Matrix-Vector Multiplication on GPUs , 2009 .
[7] Eitan Grinspun,et al. Sparse matrix solvers on the GPU: conjugate gradients and multigrid , 2003, SIGGRAPH Courses.
[8] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[9] Yousef Saad,et al. High performance manycore solvers for reservoir simulation , 2010 .
[10] Wolfgang Straßer,et al. A Parallel Preconditioned Conjugate Gradient Solver for the Poisson Problem on a Multi-GPU Platform , 2010, 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing.
[11] Yao Zhang,et al. Scan primitives for GPU computing , 2007, GH '07.
[12] M. Newman,et al. Interpolation and approximation , 1965 .
[13] Arutyun Avetisyan,et al. Automatically Tuning Sparse Matrix-Vector Multiplication for GPU Architectures , 2010, HiPEAC.
[14] Jack Dongarra,et al. Scientific Computing with Multicore and Accelerators , 2010, Chapman and Hall / CRC computational science series.
[15] Frédéric Guyomarc'h,et al. Least-Squares Polynomial Filters for Ill-Conditioned Linear Systems , 2001 .
[16] Manish Parashar,et al. Solving Sparse Linear Systems on NVIDIA Tesla GPUs , 2009, ICCS.
[17] Y. Saad,et al. Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[18] Wilfred Pinfold,et al. Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis , 2009, HiPC 2009.
[19] Yves Robert,et al. Regular incomplete factorizations of real positive definite matrices , 1982 .
[20] Jack Dongarra,et al. Proceedings of the 9th International Conference on Computational Science , 2009, ICCS 2009.
[21] P. Davis. Interpolation and approximation , 1965 .
[22] Richard W. Vuduc,et al. Model-driven autotuning of sparse matrix-vector multiply on GPUs , 2010, PPoPP '10.
[23] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[24] Rajesh Bordawekar,et al. Optimizing Sparse Matrix-Vector Multiplication on GPUs using Compile-time and Run-time Strategies , 2008 .
[25] Michael Garland,et al. Implementing sparse matrix-vector multiplication on throughput-oriented processors , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.
[26] Alan George,et al. The Evolution of the Minimum Degree Ordering Algorithm , 1989, SIAM Rev..
[27] Youcef Saad,et al. A Basic Tool Kit for Sparse Matrix Computations , 1990 .
[28] Ester M. Garzón,et al. The sparse matrix vector product on GPUs , 2011 .
[29] James Demmel,et al. LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs , 2008 .
[30] Atsushi Suzuki,et al. New Row-grouped CSR format for storing the sparse matrices on GPU with implementation in CUDA , 2010, ArXiv.
[31] Hiroshi Okuda,et al. Conjugate Gradients on Graphic Hardware : Performance & Feasibility , 2008 .
[32] Arutyun Avetisyan,et al. Implementing Blocked Sparse Matrix-Vector Multiplication on NVIDIA GPUs , 2009, SAMOS.