Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm

[1]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[2]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[3]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[4]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[5]  P. Williams Hydrology of the Walkoropupu Springs: A major tidal karst resurgence in northwest Nelson (New Zealand) , 1977 .

[6]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[7]  Laveen N. Kanal,et al.  Classification, Pattern Recognition and Reduction of Dimensionality , 1982, Handbook of Statistics.

[8]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[10]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[11]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[12]  Michael Mueller Karst hydrogeology of the Takaka valley, Golden Bay, northwest Nelson , 1991 .

[13]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.

[14]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[15]  R. Yager,et al.  Approximate Clustering Via the Mountain Method , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[16]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[17]  Chuen-Tsai Sun,et al.  Rule-base structure identification in an adaptive-network-based fuzzy inference system , 1994, IEEE Trans. Fuzzy Syst..

[18]  David G. Smith,et al.  Optically pure waters in Waikoropupu ('Pupu') Springs, Nelson, New Zealand , 1995 .

[19]  Hisao Ishibuchi,et al.  Selecting fuzzy if-then rules for classification problems using genetic algorithms , 1995, IEEE Trans. Fuzzy Syst..

[20]  H. Maier,et al.  The Use of Artificial Neural Networks for the Prediction of Water Quality Parameters , 1996 .

[21]  Wayne Woldt,et al.  Transient Ground‐Water Flow Simulation Using a Fuzzy Set Approach , 1997 .

[22]  Roderick Murray-Smith,et al.  Multiple Model Approaches to Modelling and Control , 1997 .

[23]  T. Johansen,et al.  Operating regime based process modeling and identification , 1997 .

[24]  Robert Babuska,et al.  Fuzzy Modeling for Control , 1998 .

[25]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[26]  R Govindaraju,et al.  ARTIFICIAL NEURAL NETWORKS IN HYDROLOGY: II, HYDROLOGIC APPLICATIONS , 2000 .

[27]  R. Abrahart,et al.  Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments , 2000 .

[28]  Chin-Teng Lin,et al.  A GA-based fuzzy adaptive learning control network , 2000, Fuzzy Sets Syst..

[29]  Asaad Y. Shamseldin,et al.  A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi–Sugeno fuzzy system , 2001 .

[30]  Yen-Chang Chen,et al.  A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction , 2001 .

[31]  Nikola Kasabov,et al.  ECM — A Novel On-line, Evolving Clustering Method and Its Applications , 2001 .

[32]  O. Nelles Nonlinear System Identification , 2001 .

[33]  A. Bárdossy,et al.  Development of a fuzzy logic-based rainfall-runoff model , 2001 .

[34]  Nikola K. Kasabov,et al.  DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction , 2002, IEEE Trans. Fuzzy Syst..

[35]  R. Reeves,et al.  Dynamic Fuzzy Modeling of Storm Water Infiltration in Urban Fractured Aquifers , 2002 .

[36]  K. P. Sudheer,et al.  A data‐driven algorithm for constructing artificial neural network rainfall‐runoff models , 2002 .

[37]  Francisco Herrera,et al.  Ten years of genetic fuzzy systems: current framework and new trends , 2004, Fuzzy Sets Syst..

[38]  K. P. Sudheer,et al.  A neuro-fuzzy computing technique for modeling hydrological time series , 2004 .

[39]  Barnali M. Dixon,et al.  Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis , 2005 .

[40]  Nenad Koncar,et al.  A note on the Gamma test , 1997, Neural Computing & Applications.

[41]  K. P. Sudheer,et al.  Short‐term flood forecasting with a neurofuzzy model , 2005 .

[42]  Fi-John Chang,et al.  Adaptive neuro-fuzzy inference system for prediction of water level in reservoir , 2006 .

[43]  Paulo Chaves,et al.  Deriving reservoir operational strategies considering water quantity and quality objectives by stochastic fuzzy neural networks , 2007 .

[44]  C. Shu,et al.  Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system , 2008 .