Quantitative color optical flow

We perform a qualitative and quantitative analysis of various multi-frame color optical flow methods for synthetic and real panning and zooming image sequences. We show that optical flow accuracy improvement can be slightly improved if color images are available instead of gray value or saturation images. We show the usefulness of a directional regularization constraint for computing optical flow when the camera motion is known to be panning or zooming.

[1]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[2]  Polina Golland,et al.  Motion from Color , 1997, Comput. Vis. Image Underst..

[3]  Brian G. Schunck,et al.  Image Flow: Fundamentals and Algorithms , 1988 .

[4]  Reinhard Klette,et al.  Experience with Optical Flow in Colour Video Image Sequences , 2001 .

[5]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[6]  Vishal Markandey,et al.  Multispectral constraints for optical flow computation , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[7]  Naoya Ohta,et al.  Optical flow detection by color images , 1990 .

[8]  Arun N. Netravali,et al.  Reconstruction filters in computer-graphics , 1988, SIGGRAPH.

[9]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[10]  Eero P. Simoncelli Design of multi-dimensional derivative filters , 1994, Proceedings of 1st International Conference on Image Processing.

[11]  Thomas S. Huang,et al.  Image processing , 1971 .