Phases Hybriding and Hierarchical Structuring of Mesoporous TiO2 Nanowire Bundles for High‐Rate and High‐Capacity Lithium Batteries

A hierarchical mesoporous TiO2 nanowire bundles (HM‐TiO2‐NB) superstructure with amorphous surface and straight nanochannels has been designed and synthesized through a templating method at a low temperature under acidic and wet conditions. The obtained HM‐TiO2‐NB superstructure demonstrates high reversible capacity, excellent cycling performance, and superior rate capability. Most importantly, a self‐improving phenomenon of Li+ insertion capability based on two simultaneous effects, the crystallization of amorphous TiO2 and the formation of Li2Ti2O4 crystalline dots on the surface of TiO2 nanowires, has been clearly revealed through ex situ transmission electron microcopy (TEM), high‐resolution transmission electron microscopy (HRTEM), X‐ray diffraction (XRD), Raman, and X‐ray photoelectron spectroscopy (XPS) techniques during the Li+ insertion process. When discharged for 100 cycles at 1 C, the HM‐TiO2‐NB exhibits a reversible capacity of 174 mA h g−1. Even when the current density is increased to 50 C, a very stable and extraordinarily high reversible capacity of 96 mA h g−1 can be delivered after 50 cycles. Compared to the previously reported results, both the lithium storage capacity and rate capability of our pure TiO2 material without any additives are among the highest values reported. The advanced electrochemical performance of these HM‐TiO2‐NB superstructures is the result of the synergistic effect of hybriding of amorphous and crystalline (anatase/rutile) phases and hierarchically structuring of TiO2 nanowire bundles. Our material could be a very promising anodic material for lithium‐ion batteries.

[1]  B. Su,et al.  Design of new anode materials based on hierarchical, three dimensional ordered macro-mesoporous TiO2 for high performance lithium ion batteries , 2014 .

[2]  Soo Min Hwang,et al.  Core-shell structured silicon nanoparticles@TiO2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode. , 2014, ACS nano.

[3]  Marnix Wagemaker,et al.  Impact of Particle Size on the Non-Equilibrium Phase Transition of Lithium-Inserted Anatase TiO2 , 2014 .

[4]  Meng Gu,et al.  Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO2 Nanotubes , 2014 .

[5]  K. Hemalatha,et al.  TiO2 coated carbon nanotubes for electrochemical energy storage , 2014 .

[6]  Wei Zhang,et al.  Built-in electric field-assisted surface-amorphized nanocrystals for high-rate lithium-ion battery. , 2013, Nano letters.

[7]  L. Kavan,et al.  Lithium Insertion into Titanium Dioxide (Anatase): A Raman Study with 16/18O and 6/7Li Isotope Labeling , 2013 .

[8]  Kyu-Nam Jung,et al.  High Performance N-Doped Mesoporous Carbon Decorated TiO2 Nanofibers as Anode Materials for Lithium-Ion Batteries , 2013 .

[9]  B. Chowdari,et al.  Metal oxides and oxysalts as anode materials for Li ion batteries. , 2013, Chemical reviews.

[10]  N. A. Kyeremateng,et al.  Effect of Sn-doping on the electrochemical behaviour of TiO2 nanotubes as potential negative electrode materials for 3D Li-ion micro batteries , 2013 .

[11]  Xiao‐Yu Yang,et al.  Self-templated synthesis of microporous CoO nanoparticles with highly enhanced performance for both photocatalysis and lithium-ion batteries , 2013 .

[12]  B. Su,et al.  Hierarchically Structured Porous Materials for Energy Conversion and Storage , 2012 .

[13]  P. Bruce,et al.  Lithium insertion into anatase nanotubes , 2012 .

[14]  Yu Zhou,et al.  Anatase/rutile TiO2 nanocomposite microspheres with hierarchically porous structures for high-performance lithium-ion batteries , 2012 .

[15]  Dong‐Wan Kim,et al.  Enhancement of cyclability of urchin-like rutile TiO2 submicron spheres by nanopainting with carbon , 2012 .

[16]  Jiulin Wang,et al.  Nanosheet‐Constructed Porous TiO2–B for Advanced Lithium Ion Batteries , 2012, Advanced materials.

[17]  Guozhong Cao,et al.  Three-dimensional coherent titania-mesoporous carbon nanocomposite and its lithium-ion storage properties. , 2012, ACS applied materials & interfaces.

[18]  C. D. Wang,et al.  Facile and rapid synthesis of highly porous wirelike TiO2 as anodes for lithium-ion batteries. , 2012, ACS applied materials & interfaces.

[19]  K. Stevenson,et al.  Influence of mesoporosity on lithium-ion storage capacity and rate performance of nanostructured TiO2(B). , 2012, Langmuir : the ACS journal of surfaces and colloids.

[20]  Yong‐Mook Kang,et al.  Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. , 2011, Journal of the American Chemical Society.

[21]  Xue Chen,et al.  Facile synthesis and electrochemical characterization of porous and dense TiO2 nanospheres for lithium-ion battery applications , 2011 .

[22]  J. Greeley,et al.  Effect of Concentration on the Energetics and Dynamics of Li Ion Transport in Anatase and Amorphous TiO2 , 2011 .

[23]  A. Manthiram,et al.  Hollow Core–Shell Mesoporous TiO2 Spheres for Lithium Ion Storage , 2011 .

[24]  Ying Wang,et al.  Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties. , 2011, Journal of nanoscience and nanotechnology.

[25]  K. Stevenson,et al.  Morphology Dependence of the Lithium Storage Capability and Rate Performance of Amorphous TiO2 Electrodes , 2011 .

[26]  Zongping Shao,et al.  Facile Synthesis of Nanocrystalline TiO2 Mesoporous Microspheres for Lithium-Ion Batteries , 2011 .

[27]  Guangmin Zhou,et al.  Graphene-Wrapped Fe(3)O(4) Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries , 2010 .

[28]  Yujing Liu,et al.  Ultrasmall titania nanocrystals and their direct assembly into mesoporous structures showing fast lithium insertion. , 2010, Journal of the American Chemical Society.

[29]  S. Das,et al.  Effect of Nanostructuring and Ex situ Amorphous Carbon Coverage on the Lithium Storage and Insertion Kinetics in Anatase Titania , 2010 .

[30]  M. Wohlfahrt‐Mehrens,et al.  Nanosized TiO2 Rutile with High Capacity and Excellent Rate Capability , 2010 .

[31]  M. Wagemaker,et al.  Lithium Storage in Amorphous TiO2 Nanoparticles , 2010 .

[32]  C. M. Li,et al.  Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. , 2010, Journal of the American Chemical Society.

[33]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[34]  P. Bruce,et al.  Influence of size on the rate of mesoporous electrodes for lithium batteries. , 2010, Journal of the American Chemical Society.

[35]  M. Wohlfahrt‐Mehrens,et al.  Electrochemical evaluation of rutile TiO2 nanoparticles as negative electrode for Li-ion batteries , 2009 .

[36]  Hun‐Gi Jung,et al.  Mesoporous Anatase TiO2 with High Surface Area and Controllable Pore Size by F−-Ion Doping: Applications for High-Power Li-Ion Battery Anode , 2009 .

[37]  Min Gyu Kim,et al.  Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries , 2009 .

[38]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .

[39]  Min Liu,et al.  Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays , 2009, Nanotechnology.

[40]  Ji‐Guang Zhang,et al.  Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. , 2009, ACS nano.

[41]  Feng Li,et al.  Aligned Titania Nanotubes as an Intercalation Anode Material for Hybrid Electrochemical Energy Storage , 2008 .

[42]  Jun Liu,et al.  Synthesis and Li-Ion Insertion Properties of Highly Crystalline Mesoporous Rutile TiO2 , 2008 .

[43]  P. Novák,et al.  Electrochemical lithium insertion into anatase-type TiO2: An in situ Raman microscopy investigation , 2007 .

[44]  Haoshen Zhou,et al.  Nanocrystalline Rutile TiO2 Electrode for High-Capacity and High-Rate Lithium Storage , 2007 .

[45]  Xueping Gao,et al.  Electrochemical Lithium Storage of Titanate and Titania Nanotubes and Nanorods , 2007 .

[46]  Xudong Sun,et al.  ANATASE, BROOKITE, AND RUTILE NANOCRYSTALS VIA REDOX REACTIONS UNDER MILD HYDROTHERMAL CONDITIONS: PHASE SELECTIVE SYNTHESIS AND PHYSICOCHEMICAL PROPERTIES , 2007 .

[47]  J. Tarascon,et al.  Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature , 2007 .

[48]  Yu‐Guo Guo,et al.  Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. , 2006, Chemical communications.

[49]  J. Maier,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[50]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[51]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[52]  T. Hyeon,et al.  Low-temperature synthesis of highly crystalline TiO2 nanocrystals and their application to photocatalysis. , 2005, Small.

[53]  J. Tarascon,et al.  Electrochemical lithium reactivity with nanotextured anatase-type TiO2 , 2005 .

[54]  Jaesung Song,et al.  The characterization and photocatalytic properties of mesoporous rutile TiO2 powder synthesized through self-assembly of nano crystals , 2004 .

[55]  P. Albouy,et al.  A Simple Route for Low-Temperature Synthesis of Mesoporous and Nanocrystalline Anatase Thin Films , 2003 .

[56]  G. Kearley,et al.  Multiple Li positions inside oxygen octahedra in lithiated TiO2 anatase. , 2003, Journal of the American Chemical Society.

[57]  H. Imai,et al.  Crystal phase control for titanium dioxide films by direct deposition in aqueous solutions , 2002 .

[58]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[59]  M. Jaroniec,et al.  Gas adsorption characterization of ordered organic-inorganic nanocomposite materials , 2001 .

[60]  Q. Huo,et al.  Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures , 1993, Science.

[61]  D. Murphy,et al.  The crystal structures of the lithium-inserted metal oxides Li0.5TiO2 anatase, LiTi2O4 spinel, and Li2Ti2O4 , 1984 .

[62]  H. Myers,et al.  Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer , 1957 .

[63]  Mingdeng Wei,et al.  Hierarchically porous TiO2 microspheres as a high performance anode for lithium-ion batteries , 2014 .

[64]  Yong Hu,et al.  Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability , 2012 .

[65]  Huaiyong Zhu,et al.  Electrochemical performance of anatase nanotubes converted from protonated titanate hydrate nanotubes , 2005 .

[66]  T. Kitamura,et al.  Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2 , 2001 .