Nonnegative bias reduction methods for density estimation using asymmetric kernels

Two classes of multiplicative bias correction (''MBC'') methods are applied to density estimation with support on [0,~). It is demonstrated that under sufficient smoothness of the true density, each MBC technique reduces the order of magnitude in bias, whereas the order of magnitude in variance remains unchanged. Accordingly, the mean integrated squared error of each MBC estimator achieves a faster convergence rate of O(n^-^8^/^9) when best implemented, where n is the sample size. Furthermore, MBC estimators always generate nonnegative estimates by construction. Plug-in smoothing parameter choice rules for the estimators are proposed, and their finite sample performance is examined via Monte Carlo simulations.

[1]  Song-xi Chen,et al.  Probability Density Function Estimation Using Gamma Kernels , 2000 .

[2]  Rohana J. Karunamuni,et al.  On boundary correction in kernel density estimation , 2005 .

[3]  Olivier Scaillet,et al.  Density estimation using inverse and reciprocal inverse Gaussian kernels , 2004 .

[4]  O. Scaillet,et al.  Local Multiplicative Bias Correction for Asymmetric Kernel Density Estimators , 2003 .

[5]  J. Nielsen,et al.  Local Transformation Kernel Density Estimation of Loss Distributions , 2006 .

[6]  Masayuki Hirukawa,et al.  Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval , 2010, Comput. Stat. Data Anal..

[7]  Song-xi Chen,et al.  Beta kernel estimators for density functions , 1999 .

[8]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[9]  Marno Verbeek,et al.  A Guide to Modern Econometrics , 2000 .

[10]  Jeffrey M. Wooldridge,et al.  Introductory Econometrics: A Modern Approach , 1999 .

[11]  Xiaodong Jin,et al.  Birnbaum-Saunders and Lognormal Kernel Estimators for Modelling Durations in High Frequency Financial Data , 2003 .

[12]  David Neumark,et al.  Unobserved Ability, Efficiency Wages, and Interindustry Wage Differentials , 1991 .

[13]  D. Romer Openness and Inflation: Theory and Evidence , 1991 .

[14]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[15]  B. Mccallum Inflation: Theory and Evidence , 1987 .

[16]  Alexandre Leblanc,et al.  A bias-reduced approach to density estimation using Bernstein polynomials , 2010 .

[17]  Werner Stuetzle,et al.  Some comments on the asymptotic behavior of robust smoothers , 1979 .

[18]  M. C. Jones,et al.  A Comparison of Higher-Order Bias Kernel Density Estimators , 1997 .

[19]  David W. Scott,et al.  On Improving Convergence Rates for Nonnegative Kernel Density Estimators , 1980 .

[20]  Jens Perch Nielsen,et al.  A simple bias reduction method for density estimation , 1995 .