Robust maximum-likelihood source localization in an uncertain shallow-water waveguide

This paper addresses the problem of matched-field source localization in the presence of uncertainties in the ocean environment. Because signal wavefront mismatch can cause anomalous source location estimates, development of robust localization methods is critically important. In this paper, a robust maximum-likelihood estimator is proposed. It is based on a decomposition of the field into predictable and unpredictable subspaces of the acoustic normal mode representation. The estimator uses the predictable subspace for source localization. Identification of the predictable modes is made according to the second-order joint statistics of the horizontal wave numbers. The performance of the method is evaluated and compared to other matched-field methods using simulations and acoustic array data from the Mediterranean Sea. In the presence of mismatches, the algorithm has superior probability of correct localization than the maximum-likelihood, matched-mode-processing, and Bartlett methods.

[1]  P. Gerstoft,et al.  Inversion for geometric and geoacoustic parameters in shallow water: Experimental results , 1995 .

[2]  Michael B. Porter,et al.  THE MATCHED FIELD PROCESSING BENCHMARK PROBLEMS , 1994 .

[3]  Loren W. Nolte,et al.  COMPUTATIONALLY EFFICIENT MONTE CARLO ESTIMATION ALGORITHMS FOR MATCHED FIELD PROCESSING IN UNCERTAIN OCEAN ENVIRONMENTS , 1994 .

[4]  E. J. Sullivan,et al.  Sound velocity profile estimation: a system theoretic approach , 1993 .

[5]  N. R. Chapman,et al.  Matched field inversion for geoacoustic model parameters using adaptive simulated annealing , 1993 .

[6]  T. C. Yang,et al.  Comparative performance of matched‐mode and matched‐field localization in a range‐dependent environment , 1992 .

[7]  J. Krolik Matched‐field minimum variance beamforming in a random ocean channel , 1992 .

[8]  Loren W. Nolte,et al.  A posteriori probability source localization in an uncertain sound speed, deep ocean environment , 1991 .

[9]  Donald F. Gingras,et al.  Methods for predicting the sensitivity of matched‐field processors to mismatch , 1989 .

[10]  A. Tolstoy,et al.  Sensitivity of matched field processing to sound‐speed profile mismatch for vertical arrays in a deep water Pacific environment , 1988 .

[11]  Gary R. Wilson,et al.  Matched mode localization , 1988 .

[12]  W. Kuperman,et al.  Matched field processing: source localization in correlated noise as an optimum parameter estimation problem , 1988 .

[13]  T. C. Yang A method of range and depth estimation by modal decomposition , 1987 .

[14]  E. C. Shang,et al.  Passive harmonic source ranging in waveguides by using mode filter , 1985 .

[15]  M. Porter,et al.  A numerical method for ocean‐acoustic normal modes , 1984 .

[16]  L. Felsen,et al.  Hybrid ray-mode formulation of parallel plane waveguide Green's functions , 1981 .

[17]  Melvin J. Hinich,et al.  Maximum likelihood estimation of the position of a radiating source in a waveguide , 1979 .

[18]  Melvin J. Hinich,et al.  Maximum‐likelihood signal processing for a vertical array , 1973 .

[19]  Edward M. Hofstetter,et al.  Barankin Bounds on Parameter Estimation , 1971, IEEE Trans. Inf. Theory.

[20]  Shaolin Li Localization of Remote Sources Using Multipath Propagation , 1991 .

[21]  Edmund J. Sullivan,et al.  Maximum‐likelihood passive localization using mode filtering , 1989 .