On Discrete-Time Optimality Conditions for Pseudospectral Methods, AIAA (2006; Keystone, Colorado)
暂无分享,去创建一个
[1] Qi Gong,et al. A Pseudospectral Observer for Nonlinear Systems , 2005 .
[2] W. Hager. Numerical Analysis in Optimal Control , 2001 .
[3] Mendy,et al. Multiple satellite trajectory optimization , 2004 .
[4] I. Michael Ross,et al. Discrete verification of necessary conditions for switched nonlinear optimal control systems , 2001, Proceedings of the 2004 American Control Conference.
[5] Gamal N. Elnagar,et al. The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..
[6] I. Michael Ross,et al. Pseudospectral methods for optimal motion planning of differentially flat systems , 2004, IEEE Transactions on Automatic Control.
[7] J. Betts. Survey of Numerical Methods for Trajectory Optimization , 1998 .
[8] Michael A. Saunders,et al. SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..
[9] I. Michael Ross,et al. DESIGNING OPTIMAL SPACECRAFT FORMATIONS , 2002 .
[10] Wei Kang,et al. Practical stabilization through real-time optimal control , 2006, 2006 American Control Conference.
[11] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[12] I. Michael Ross,et al. Rapid Verification Method for the Trajectory Optimization of Reentry Vehicles , 2003 .
[13] I. Michael Ross,et al. Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .
[14] Anil V. Rao,et al. Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .
[15] Ping Lu,et al. Closed-loop endoatmospheric ascent guidance , 2003 .
[16] B. Mordukhovich. Variational analysis and generalized differentiation , 2006 .
[17] I. Michael Ross,et al. Design and Control of Libration Point Spacecraft Formations , 2004 .
[18] I. Michael Ross. Hybrid Optimal Control Framework for Mission Planning , 2005, Journal of Guidance, Control, and Dynamics.
[19] I. Michael Ross,et al. Costate Estimation by a Legendre Pseudospectral Method , 1998 .
[20] Patrick A. Croley. Reachable sets for multiple asteroid sample return missions , 2005 .
[21] Jeremy Rea,et al. Launch Vehicle Trajectory Optimization Using a Legendre Pseudospectral Method , 2003 .
[22] I.M. Ross,et al. Time-optimal nonlinear feedback control for the NPSAT1 spacecraft , 2005, Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics..
[23] I. Michael Ross. 6 – Space Trajectory Optimization and L1-Optimal Control Problems , 2006 .
[24] I. Michael Ross,et al. Legendre Pseudospectral Approximations of Optimal Control Problems , 2003 .
[25] David Doman,et al. A Direct Method for Approach and Landing Trajectory Reshaping with Failure Effect Estimation , 2004 .
[26] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[27] H. G. Moyer,et al. Several trajectory optimization techniques. ii - application. , 1964 .
[28] G. Karniadakis,et al. Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .
[29] I. Michael Ross,et al. Issues in the real-time computation of optimal control , 2006, Math. Comput. Model..
[30] A. D. Ngo,et al. Footprint generation for reusable launch vehicles using a direct pseudospectral method , 2003, Proceedings of the 2003 American Control Conference, 2003..
[31] I. Michael Ross,et al. Direct Trajectory Optimization by a Chebyshev Pseudospectral Method ; Journal of Guidance, Control, and Dynamics, v. 25, 2002 ; pp. 160-166 , 2002 .
[32] D. B. Doman,et al. Modeling issues in footprint generation for reusable vehicles , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).
[33] Paul Williams,et al. Application of Pseudospectral Methods for Receding Horizon Control , 2004 .
[34] Francesca Rossi,et al. Principles and Practice of Constraint Programming – CP 2003 , 2003, Lecture Notes in Computer Science.
[35] Richard B. Vinter,et al. Optimal Control , 2000 .
[36] Robert Stevens,et al. Preliminary Design of Earth-Mars Cyclers Using Solar Sails , 2005 .
[37] J. Weideman,et al. Spectral Methods Based on Nonclassical Orthogonal Polynomials , 1999 .
[38] Qi Gong,et al. A pseudospectral method for the optimal control of constrained feedback linearizable systems , 2006, IEEE Transactions on Automatic Control.
[39] I.M. Ross,et al. On the Pseudospectral Covector Mapping Theorem for Nonlinear Optimal Control , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.
[40] I. Michael Ross. A Roadmap for Optimal Control: The Right Way to Commute , 2005, Annals of the New York Academy of Sciences.
[41] I. Michael Ross,et al. A Perspective on Methods for Trajectory Optimization , 2002 .