Manipulation of single neutral atoms in optical lattices (5 pages)

We analyze a scheme to manipulate quantum states of neutral atoms at individual sites of optical lattices using focused laser beams. Spatial distributions of focused laser intensities induce position-dependent energy shifts of hyperfine states, which, combined with microwave radiation, allow selective manipulation of quantum states of individual target atoms. We show that various errors in the manipulation process are suppressed below ${10}^{\ensuremath{-}4}$ with properly chosen microwave pulse sequences and laser parameters. A similar idea is also applied to measure quantum states of single atoms in optical lattices.

[1]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[2]  Thomas G. Walker,et al.  Fast ground state manipulation of neutral atoms in microscopic optical traps. , 2005, Physical review letters.

[3]  Ashish V. Thapliyal,et al.  Perfect pattern formation of neutral atoms in an addressable optical lattice , 2005 .

[4]  M. Raizen,et al.  A high frequency optical trap for atoms using Hermite-Gaussian beams. , 2005, Optics express.

[5]  Ashish V. Thapliyal,et al.  Another way to approach zero entropy for a finite system of atoms , 2004 .

[6]  I. Dotsenko,et al.  Neutral atom quantum register. , 2004, Physical review letters.

[7]  T. Hänsch,et al.  Controlled collisions for multi-particle entanglement of optically trapped atoms , 2003, Nature.

[8]  Immanuel Bloch,et al.  Coherent transport of neutral atoms in spin-dependent optical lattice potentials. , 2003, Physical review letters.

[9]  M. Lukin,et al.  Controlling spin exchange interactions of ultracold atoms in optical lattices. , 2002, Physical review letters.

[10]  Jonathan A. Jones,et al.  Tackling systematic errors in quantum logic gates with composite rotations , 2002, quant-ph/0208092.

[11]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[12]  Theodor W. Hänsch,et al.  Resolving and addressing atoms in individual sites of a CO 2 -laser optical lattice , 2000, QELS 2000.

[13]  J. Cirac,et al.  Quantum computing with neutral atoms , 1999, quant-ph/9904010.

[14]  P. Zoller,et al.  Entanglement of Atoms via Cold Controlled Collisions , 1998, quant-ph/9810087.

[15]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[16]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[17]  S. Stenholm,et al.  Laser cooling and trapping , 1988 .

[18]  Iroon Polytechniou Influence of cultivation temperature on the ligninolytic activity of selected fungal strains , 2006 .