``TNOs are Cool'': A survey of the trans-Neptunian region . III. Thermophysical properties of 90482 Orcus and 136472 Makemake

Context. The goal of the Herschel open time programme “TNOs are Cooll” is to derive the physical and thermal properties for a large sample of Centaurs, and trans-Neptunian objects (TNOs), including resonant, classical, detached and scattered disk objects. Aims. Based on observations of two targets we tried (i) to optimise the SPIRE observing technique for faint (close to the background confusion noise), slowly moving targets; (ii) to test different thermal model techniques; (iii) to determine radiometric diameter and albedo values; (iv) to compare with Spitzer results whenever possible. Methods. We obtained SPIRE photometry on two targets and PACS photometry on one of the targets. Results. We present results for the two targets, (90482) Orcus and (136472) Makemake, observed with SPIRE and for one of those targets, Makemake, observed with PACS. We adopt pv = 0.27 and D = 850 km as our best estimate of the albedo and diameter of Orcus using single terrain models. With two-terrain models for Makemake, the bright terrain is fitted by, 0.78 \textless pv \textless 0.90, and the dark terrain 0.02 \textless pv \textless 0.12, giving 1360 \textless D \textless 1480 km. Conclusions. A single terrain model was derived for Orcus through the SPIRE photometry combined with MIPS data. The Makemake data from MIPS, PACS and SPIRE combined are not compatible with a single terrain model, but can be modelled with a two-terrain fit. These science demonstration observations have shown that the scanning technique, which allows us to judge the influence of background structures, has proved to be a good basis for this key programme.

[1]  M. Barucci,et al.  Ion Irradiation of Asphaltite: Optical Effects and Implications for Trans-Neptunian Objects and Centaurs , 2003 .

[2]  Alan W. Harris,et al.  A Thermal Model for Near-Earth Asteroids , 1998 .

[3]  Harold F. Levison,et al.  Evidence for two populations of classical transneptunian objects : The strong inclination dependence of classical binaries , 2007, 0711.1545.

[4]  Elisabetta Dotto,et al.  Optical alteration of complex organics induced by ion-irradiation: 1. Laboratory experiments suggest unusual space weathering trend. , 2004 .

[5]  Chadwick A. Trujillo,et al.  Properties of the Trans-Neptunian Belt: Statistics from the Canada-France-Hawaii Telescope Survey , 2001 .

[6]  C. Trujillo,et al.  Methane and Ethane on the Bright Kuiper Belt Object 2005 FY9 , 2006 .

[7]  H. Roussel,et al.  In-flight calibration of the Herschel-SPIRE instrument , 2010, 1005.5073.

[8]  E. al.,et al.  Thermal infrared observations of the Hayabusa spacecraft target asteroid 25143 Itokawa , 2005, astro-ph/0509434.

[9]  A. Doressoundiram,et al.  "TNOs are cool": A survey of the trans-Neptunian region II. The thermal lightcurve of (136108) Haumea , 2010 .

[10]  Stefano Mottola,et al.  Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect , 2007, 0704.1915.

[11]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[12]  A. Heinze,et al.  THE ROTATION PERIOD AND LIGHT-CURVE AMPLITUDE OF KUIPER BELT DWARF PLANET 136472 MAKEMAKE (2005 FY9) , 2009 .

[13]  Jonathan I. Lunine,et al.  Saturn's moon Phoebe as a captured body from the outer Solar System , 2005, Nature.

[14]  Chris Pearson,et al.  The Herschel-SPIRE photometer data processing pipeline , 2008, Astronomical Telescopes + Instrumentation.

[15]  Nicolas Thomas,et al.  TNOs are Cool: A Survey of the Transneptunian Region , 2008, Astronomy & Astrophysics.

[16]  M. E. Brown,et al.  THE SIZE, DENSITY, AND FORMATION OF THE ORCUS–VANTH SYSTEM IN THE KUIPER BELT , 2009, 0910.4784.

[17]  David Trilling,et al.  Physical Properties of Kuiper Belt and Centaur Objects: Constraints from the Spitzer Space Telescope , 2007 .

[18]  H. Bischof,et al.  The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory , 2010, 1005.1487.

[19]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[20]  Göran Pilbratt Herschel mission overview and key programmes , 2008, Astronomical Telescopes + Instrumentation.

[21]  Peter Ade,et al.  Herschel-SPIRE: design, ground test results, and predicted performance , 2008, Astronomical Telescopes + Instrumentation.

[22]  P. J. Schinder,et al.  Temperatures, Winds, and Composition in the Saturnian System , 2005, Science.

[23]  J. Ortiz,et al.  Short-term rotational variability of eight KBOs from Sierra Nevada Observatory , 2006 .

[24]  David L. Rabinowitz,et al.  Photometric Observations Constraining the Size, Shape, and Albedo of 2003 EL61, a Rapidly Rotating, Pluto-sized Object in the Kuiper Belt , 2006 .

[25]  J. Kay,et al.  Phoebe: Albedo Map and Photometric Properties , 1999 .

[26]  J. Luu,et al.  Accretion in the Early Kuiper Belt. I. Coagulation and Velocity Evolution , 1998, astro-ph/9804185.

[27]  Physical Properties of Trans-Neptunian Object (20000) Varuna , 2002, astro-ph/0201082.

[28]  G. Consolmagno,et al.  Evidence of N2-ice on the surface of the icy dwarf Planet 136472 (2005 FY9) , 2008, 0801.3115.

[29]  David Jewitt,et al.  Densities of Solar System Objects from Their Rotational Light Curves , 2007 .

[30]  D. Todorović,et al.  Thermal properties , 2022, Physics Subject Headings (PhySH).

[31]  J. Licandro,et al.  The surface of (136108) Haumea (2003 EL61), the largest carbon-depleted object in the trans-Neptunian belt , 2008, 0803.1080.