Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions

It is well known that rivers connect upstream and downstream ecosystems within watersheds. Here we describe the concept of precipitationsheds to show how upwind terrestrial evaporation source areas contribute moisture for precipitation to downwind sink regions. We illustrate the importance of upwind land cover in precipitationsheds to sustain precipitation in critically water stressed downwind areas, specifically dryland agricultural areas. We first identify seven regions where rainfed agriculture is particularly vulnerable to reductions in precipitation, and then map their precipitationsheds. We then develop a framework for qualitatively assessing the vulnerability of precipitation for these seven agricultural regions. We illustrate that the sink regions have varying degrees of vulnerability to changes in upwind evaporation rates depending on the extent of the precipitationshed, source region land use intensity and expected land cover changes in the source region.

[1]  Roni Avissar,et al.  The local and global effects of Amazon deforestation , 2001 .

[2]  C. Müller,et al.  Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study , 2009 .

[3]  K. Findell Atmospheric Controls on Soil Moisture-Boundary Layer Interactions , 2001 .

[4]  A. Numaguti Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model , 1999 .

[5]  A Lagrangian identification of major sources of Sahel moisture , 2006 .

[6]  P. Dirmeyer,et al.  Characterization of the Global Hydrologic Cycle from a Back-Trajectory Analysis of Atmospheric Water Vapor , 2007 .

[7]  J. Ramirez,et al.  Ecohydrologic controls on vegetation density and evapotranspiration partitioning across the climatic gradients of the central United States , 2008 .

[8]  C. Reick,et al.  What do moisture recycling estimates tell us ? Exploring the extreme case of non-evaporating continents , 2011 .

[9]  J. Hewlett,et al.  A REVIEW OF CATCHMENT EXPERIMENTS TO DETERMINE THE EFFECT OF VEGETATION CHANGES ON WATER YIELD AND EVAPOTRANSPIRATION , 1982 .

[10]  A. Dolman,et al.  Comment on "Biotic pump of atmospheric moisture as driver of the hydrological cycle on land" by A. M. Makarieva and V. G. Gorshkov, Hydrol. Earth Syst. Sci., 11, 1013-1033, 2007 , 2009 .

[11]  M. Hansen,et al.  Quantification of global gross forest cover loss , 2010, Proceedings of the National Academy of Sciences.

[12]  F. Dominguez,et al.  Precipitation recycling variability and ecoclimatological stability - A study using NARR data. Pa , 2008 .

[13]  O. Boucher,et al.  Direct human influence of irrigation on atmospheric water vapour and climate , 2004 .

[14]  Hubert H. G. Savenije,et al.  Length and time scales of atmospheric moisture recycling , 2010 .

[15]  G. Meehl,et al.  The Importance of Land-Cover Change in Simulating Future Climates , 2005, Science.

[16]  E. Eltahir,et al.  The Role of Vegetation in the Dynamics of West African Monsoons , 1998 .

[17]  Erle C. Ellis,et al.  Anthropogenic transformation of the biomes, 1700 to 2000 , 2010 .

[18]  Dara Entekhabi,et al.  Estimation of Continental Precipitation Recycling. , 1993 .

[19]  N. Ramankutty,et al.  Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000 , 2008 .

[20]  R. Pielke,et al.  An overview of regional land-use and land-cover impacts on rainfall , 2007 .

[21]  M. Rietkerk,et al.  Coupling microscale vegetation–soil water and macroscale vegetation–precipitation feedbacks in semiarid ecosystems , 2007 .

[22]  T. Downing,et al.  Global Desertification: Building a Science for Dryland Development , 2007, Science.

[23]  E. Viglizzo,et al.  Ecological interactions, feedbacks, thresholds and collapses in the Argentine Pampas in response to climate and farming during the last century , 2006 .

[24]  Harald Kunstmann,et al.  The Hydrological Cycle in Three State-of-the-Art Reanalyses: Intercomparison and Performance Analysis , 2012 .

[25]  H. Lettau,et al.  Amazonia's Hydrologic Cycle and the Role of Atmospheric Recycling in Assessing Deforestation Effects , 1979 .

[26]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[27]  Hubert H. G. Savenije,et al.  Origin and fate of atmospheric moisture over continents , 2010 .

[28]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[29]  N. Ramankutty,et al.  Characterizing patterns of global land use: An analysis of global croplands data , 1998 .

[30]  Erle C. Ellis,et al.  Putting people in the map: anthropogenic biomes of the world , 2008 .

[31]  David Rind,et al.  Global sources of local precipitation as determined by the Nasa/Giss GCM , 1986 .

[32]  B. Soden,et al.  An Assessment of Climate Feedbacks in Coupled Ocean–Atmosphere Models , 2006 .

[33]  J. W. Bruce,et al.  The causes of land-use and land-cover change: moving beyond the myths , 2001 .

[34]  M. Budyko,et al.  Climate and life , 1975 .

[35]  Millenium Ecosystem Assessment Ecosystems and human well-being: synthesis , 2005 .

[36]  Obi Reddy P. Gangalakunta,et al.  Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium , 2009 .

[37]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[38]  J. Rockström,et al.  Zooming in on the global hotspots of rainfed agriculture in water-constrained environments. , 2009 .

[39]  Lindsay C. Stringer,et al.  Land degradation assessment in Southern Africa: integrating local and scientific knowledge bases , 2007 .

[40]  N. Ramankutty,et al.  Modeling the hydrological impact of land-use change in West Africa , 2007 .

[41]  N. Ramankutty,et al.  Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000 , 2008 .

[42]  H. Savenije Water scarcity indicators; the deception of the numbers , 2000 .

[43]  W. Lucht,et al.  Terrestrial vegetation and water balance-hydrological evaluation of a dynamic global vegetation model , 2004 .

[44]  C. Reick,et al.  What do moisture recycling estimates tell? Lessons from an extreme global land-cover change model experiment , 2011 .

[45]  Dieter Gerten,et al.  Human alterations of the terrestrial water cycle through land management , 2008 .

[46]  S. Carpenter,et al.  Solutions for a cultivated planet , 2011, Nature.

[47]  P. Dirmeyer,et al.  Import and export of atmospheric water vapor between nations , 2009 .

[48]  H. Kunstmann,et al.  Influence of soil‐moisture and land use change on precipitation in the Volta Basin of West Africa , 2007 .

[49]  Faisal Hossain,et al.  Have Large Dams Altered Extreme Precipitation Patterns , 2009 .

[50]  M. Hulme,et al.  A high-resolution data set of surface climate over global land areas , 2002 .

[51]  M. Bosilovich,et al.  Simulation of Water Sources and Precipitation Recycling for the MacKenzie, Mississippi and Amazon River Basins , 2013 .

[52]  Eric Viala,et al.  Water for food, water for life a comprehensive assessment of water management in agriculture , 2008 .

[53]  O. Hoegh‐Guldberg,et al.  Ecological responses to recent climate change , 2002, Nature.

[54]  S. Carpenter,et al.  Global Consequences of Land Use , 2005, Science.

[55]  Michael G. Bosilovich,et al.  Global Energy and Water Budgets in MERRA , 2011 .

[56]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[57]  M. Claussen,et al.  The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate , 2011 .

[58]  W. Steffen,et al.  Human modification of global water vapor flows from the land surface. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Rafael L. Bras,et al.  Precipitation recycling in the Amazon basin , 1994 .

[60]  P. Döll,et al.  MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high‐resolution data set for agricultural and hydrological modeling , 2010 .

[61]  D. Molden Water for food, water for life: a comprehensive assessment of water management in agriculture , 2007 .

[62]  S. Milton,et al.  A Conceptual Model of Arid Rangeland Degradation , 1994 .

[63]  Jiewei Chen Rapid urbanization in China: A real challenge to soil protection and food security , 2007 .

[64]  Hubert H. G. Savenije,et al.  Spatial variability of evaporation and moisture storage in the swamps of the upper Nile studied by remote sensing techniques , 2004 .

[65]  Prem S. Bindraban,et al.  Ecosystems for water and food security , 2011 .

[66]  P. Kabat,et al.  Diagnosis of Local Land–Atmosphere Feedbacks in India , 2011 .

[67]  J. Carrera,et al.  Irrigation enhances precipitation at the mountains downwind , 2010 .

[68]  Hubert H. G. Savenije,et al.  New definitions for moisture recycling and the relationship with land-use changes in the Sahel , 1995 .

[69]  V. G. Gorshkov,et al.  Biotic pump of atmospheric moisture as driver of the hydrological cycle on land , 2006 .

[70]  Martin Wild,et al.  Global precipitation response to changing forcings since 1870 , 2011 .

[71]  J. Rockström,et al.  Future water availability for global food production: The potential of green water for increasing resilience to global change , 2009 .

[72]  R. B. Jackson,et al.  Modeling Root Water Uptake in Hydrological and Climate Models. , 2001 .

[73]  J. Werhahn,et al.  Climatic Feedbacks and Desertification: The Mediterranean Model , 2005 .