Isotropy and Metastable States: The Landscape of the XY Hamiltonian Revisited

The number of local optima is an important characteristic of a landscape. It appears to depend on the pair-correlation of the landscape as well as on its deviations from statistical isotropy. We use Tanaka and Edward's XY Hamiltonian as an example for an investigation of the relationships between ruggedness, metastable states, and isotropy.

[1]  Peter F. Stadler,et al.  Local minima in the graph bipartitioning problem , 1996 .

[2]  A. Bray,et al.  Metastable states in spin glasses with short-ranged interactions , 1981 .

[3]  Lov K. Grover Local search and the local structure of NP-complete problems , 1992, Oper. Res. Lett..

[4]  P. Schuster,et al.  A computer model of evolutionary optimization. , 1987, Biophysical chemistry.

[5]  B. Derrida Random-Energy Model: Limit of a Family of Disordered Models , 1980 .

[6]  Weinberger,et al.  RNA folding and combinatory landscapes. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  Bernard Manderick,et al.  The Genetic Algorithm and the Structure of the Fitness Landscape , 1991, ICGA.

[8]  G. Sabidussi Vertex-transitive graphs , 1964 .

[9]  P. Stadler,et al.  The landscape of the traveling salesman problem , 1992 .

[10]  Peter F. Stadler,et al.  Correlation in Landscapes of Combinatorial Optimization Problems , 1992 .

[11]  Schuster,et al.  Physical aspects of evolutionary optimization and adaptation. , 1989, Physical review. A, General physics.

[12]  Norman Biggs Algebraic Graph Theory: Index , 1974 .

[13]  Peter F. Stadler,et al.  Towards a theory of landscapes , 1995 .

[14]  P. Anderson,et al.  Application of statistical mechanics to NP-complete problems in combinatorial optimisation , 1986 .

[15]  E. Gardner,et al.  Metastable states of a spin glass chain at 0 temperature , 1986 .

[16]  Peter F. Stadler,et al.  Landscapes: Complex Optimization Problems and Biopolymer Structures , 1994, Comput. Chem..

[17]  Jean-Pierre Serre,et al.  Linear representations of finite groups , 1977, Graduate texts in mathematics.

[18]  P. Stadler Landscapes and their correlation functions , 1996 .

[19]  B. Mohar,et al.  Eigenvalues in Combinatorial Optimization , 1993 .

[20]  A. Bray,et al.  Metastable states in spin glasses , 1980 .

[21]  Frank Harary,et al.  Distance in graphs , 1990 .

[22]  Walter Kern,et al.  On the Depth of Combinatorial Optimization Problems , 1993, Discret. Appl. Math..

[23]  E D Weinberger,et al.  Why some fitness landscapes are fractal. , 1993, Journal of theoretical biology.

[24]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[25]  Peter F. Stadler,et al.  Local Minima of p-Spin Models , 1995 .

[26]  A. W. M. Dress,et al.  Evolution on sequence space and tensor products of representation spaces , 1988 .

[27]  Jennifer Ryan,et al.  The Depth and Width of Local Minima in Discrete Solution Spaces , 1995, Discret. Appl. Math..

[28]  T. Broadbent Abelian Groups , 1970, Nature.

[29]  Bernard Derrida,et al.  The random energy model , 1980 .

[30]  Peter F. Stadler,et al.  Canonical approximation of fitness landscapes , 1996 .

[31]  P. Schuster,et al.  Approximate scaling properties of RNA free energy landscapes. , 1996, Journal of theoretical biology.

[32]  S. Kauffman,et al.  Towards a general theory of adaptive walks on rugged landscapes. , 1987, Journal of theoretical biology.

[33]  M. Eigen,et al.  The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle. , 1977, Die Naturwissenschaften.

[34]  P. Schuster,et al.  Statistics of landscapes based on free energies, replication and degradation rate constants of RNA secondary structures , 1991 .

[35]  D S Rumschitzki Spectral properties of Eigen evolution matrices , 1987, Journal of mathematical biology.

[36]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[37]  Peter F. Stadler,et al.  Linear Operators on Correlated Landscapes , 1994 .

[38]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[39]  Henri Orland,et al.  White and weighted averages over solutions of Thouless Anderson Palmer equations for the Sherrington Kirkpatrick spin glass , 1980 .

[40]  F. Tanaka,et al.  Analytic theory of the ground state properties of a spin glass. II. XY spin glass , 1980 .

[41]  L. Lovász Spectra of graphs with transitive groups , 1975 .

[42]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .