Probing the Electroweak Phase Transition with Higgs Factories and Gravitational Waves

After the discovery of the Higgs boson, understanding the nature of electroweak symmetry breaking and the associated electroweak phase transition has become the most pressing question in particle physics. Answering this question is a priority for experimental studies. Data from the LHC and future lepton collider-based Higgs factories may uncover new physics coupled to the Higgs boson, which can induce the electroweak phase transition to become first order. Such a phase transition generates a stochastic background of gravitational waves, which could potentially be detected by a space-based gravitational wave interferometer. In this paper, we survey a few classes of models in which the electroweak phase transition is strongly first order. We identify the observables that would provide evidence of these models at the LHC and next-generation lepton colliders, and we assess whether the corresponding gravitational wave signal could be detected by eLISA. We find that most of the models with first-order electroweak phase transition can be covered by the precise measurements of Higgs couplings at the proposed Higgs factories. We also map out the model space that can be probed with gravitational wave detection by eLISA.

[1]  G. Servant,et al.  Flavor cosmology: dynamical yukawas in the Froggatt-Nielsen mechanism , 2016, 1608.03254.

[2]  Andrei,et al.  Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV , 2016, 1606.02266.

[3]  M. Chala,et al.  Unified explanation for dark matter and electroweak baryogenesis with direct detection and gravitational wave signatures , 2016, 1605.08663.

[4]  Peter Winslow,et al.  Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier , 2016, 1605.06123.

[5]  G. Servant,et al.  A First-Order Electroweak Phase Transition in the Standard Model from Varying Yukawas , 2016 .

[6]  M. Kakizaki,et al.  Synergy between measurements of gravitational waves and the triple-Higgs coupling in probing the first-order electroweak phase transition , 2016, 1604.02069.

[7]  D. d’Enterria Physics case of FCC-ee , 2016, 1601.06640.

[8]  Yi-Fu Cai,et al.  Probing the nature of the electroweak phase transition from particle colliders to gravitational wave detectors , 2016 .

[9]  A. Mégevand,et al.  Gravitational waves from a very strong electroweak phase transition , 2015, 1512.08962.

[10]  S. Huber,et al.  Detectable gravitational waves from very strong phase transitions in the general NMSSM , 2015, 1512.06357.

[11]  Antoine Petiteau,et al.  Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions , 2015, 1512.06239.

[12]  C. Wagner,et al.  Probing the electroweak phase transition at the LHC , 2015, 1512.00068.

[13]  Zhaolong Yu,et al.  Testing the electroweak phase transition and electroweak baryogenesis at the LHC and a circular electron-positron collider , 2015, 1511.03969.

[14]  M. Kakizaki,et al.  Gravitational waves as a probe of extended scalar sectors with the first order electroweak phase transition , 2015, 1509.08394.

[15]  Pedro Antonio Gutiérrez,et al.  Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector , 2015, Journal of High Energy Physics.

[16]  U. Helsinki,et al.  Standard model cross-over on the lattice , 2015, 1508.07161.

[17]  James D. Wells,et al.  The Physics Case of the International Linear Collider , 2015, 1506.05992.

[18]  Lian-tao Wang,et al.  Probing the fermionic Higgs portal at lepton colliders , 2015, 1506.05465.

[19]  J. Kozaczuk Bubble expansion and the viability of singlet-driven electroweak baryogenesis , 2015, 1506.04741.

[20]  W. Yao,et al.  Probing new physics of cubic Higgs boson interaction via Higgs pair production at hadron colliders , 2015, 1506.03302.

[21]  R. Contino,et al.  Effective field theory analysis of double Higgs production via gluon fusion , 2015, 1502.00539.

[22]  A. Barr,et al.  Higgs self-coupling measurements at a 100 TeV hadron collider , 2014, 1412.7154.

[23]  JiJi Fan,et al.  Precision natural SUSY at CEPC, FCC-ee, and ILC , 2014, 1412.3107.

[24]  M. Perelstein,et al.  Precision Higgsstrahlung as a probe of new physics , 2014, 1411.0676.

[25]  S. Dawson,et al.  Exploring resonant di-Higgs boson production in the Higgs singlet model , 2014, 1410.5488.

[26]  David Curtin,et al.  Testing electroweak baryogenesis with future colliders , 2014, 1409.0005.

[27]  J. T. Childers,et al.  Search for the associated production of the Higgs boson with a top-quark pair , 2014, Journal of High Energy Physics.

[28]  E. Senaha,et al.  Improved sphaleron decoupling condition and the Higgs coupling constants in the real singlet-extended standard model , 2014, 1406.0433.

[29]  M. Perelstein,et al.  Higgs couplings and electroweak phase transition , 2014, 1401.1827.

[30]  M. McCullough An Indirect Model-Dependent Probe of the Higgs Self-Coupling , 2013, 1312.3322.

[31]  W. Yao,et al.  Studies of measuring Higgs self-coupling with $HH\rightarrow b\bar b \gamma\gamma$ at the future hadron colliders , 2013, 1308.6302.

[32]  C. Collaboration,et al.  Projected Performance of an Upgraded CMS Detector at the LHC and HL-LHC: Contribution to the Snowmass Process , 2013, 1307.7135.

[33]  Matthew McCullough,et al.  New probe of naturalness. , 2013, Physical review letters.

[34]  Yue Zhang,et al.  On the Higgs fit and electroweak phase transition , 2012, 1210.0906.

[35]  Lian-tao Wang,et al.  125 GeV Higgs boson and electroweak phase transition model classes , 2012, 1209.1819.

[36]  M. Carena,et al.  MSSM electroweak baryogenesis and LHC data , 2012, 1207.6330.

[37]  M. Garny,et al.  On the gauge dependence of vacuum transitions at finite temperature , 2012, 1205.3392.

[38]  M. Ramsey-Musolf,et al.  Phase transitions and gauge artifacts in an Abelian Higgs boson plus singlet model , 2012, 1204.5464.

[39]  Timothy Cohen,et al.  Electroweak baryogenesis and Higgs signatures , 2012, 1203.2924.

[40]  D. Curtin,et al.  Excluding electroweak baryogenesis in the MSSM , 2012, 1203.2932.

[41]  M. Carena,et al.  A 125 GeV SM-like Higgs in the MSSM and the γγ rate , 2011, 1112.3336.

[42]  A. J. Long,et al.  Cosmological constant, dark matter, and electroweak phase transition , 2011, 1108.5193.

[43]  M. Ramsey-Musolf,et al.  Gravity waves from a cosmological phase transition: Gauge artifacts and daisy resummations , 2011, 1104.5487.

[44]  Hiren H. Patel,et al.  Baryon washout, electroweak phase transition, and perturbation theory , 2011, 1101.4665.

[45]  Tom Melia,et al.  Next-to-leading order QCD predictions for W+W+jj production at the LHC , 2010, 1007.5313.

[46]  A. Ashoorioon,et al.  Strong electroweak phase transitions without collider traces , 2009, 0904.0353.

[47]  Maxim Perelstein,et al.  Higgs self-coupling as a probe of the electroweak phase transition , 2007, 0711.3018.

[48]  Amine Ahriche What is the Criterion for a Strong First Order Electroweak Phase Transition in Singlet Models , 2007, hep-ph/0701192.

[49]  J. Espinosa,et al.  Novel Effects in Electroweak Breaking from a Hidden Sector , 2007, hep-ph/0701145.

[50]  M. Carena,et al.  Electroweak baryogenesis and new TeV fermions , 2004, hep-ph/0410352.

[51]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[52]  M. Trodden,et al.  RECENT PROGRESS IN BARYOGENESIS , 1999, hep-ph/9901362.

[53]  M. Quirós Finite temperature field theory and phase transitions , 1999, hep-ph/9901312.

[54]  W. Yao,et al.  Studies of measuring Higgs self-coupling with HH → bb̄γγ at the future hadron colliders , 2013 .

[55]  M. N. Sergeenko,et al.  Transverse Momentum Spectra of D-and B-mesons in Hadron Collisions at High Energies , 2009 .

[56]  Iroon Polytechniou Influence of cultivation temperature on the ligninolytic activity of selected fungal strains , 2006 .