Sandwiching random regular graphs between binomial random graphs
暂无分享,去创建一个
[1] Michael Mitzenmacher,et al. Parallel peeling algorithms , 2013, SPAA.
[2] C. McDiarmid. Concentration , 1862, The Dental register.
[3] Benny Sudakov,et al. The phase transition in random graphs: A simple proof , 2012, Random Struct. Algorithms.
[4] Alan M. Frieze,et al. Random Regular Graphs of Non-Constant Degree: Connectivity and Hamiltonicity , 2002, Combinatorics, Probability and Computing.
[5] Nobutaka Shimizu,et al. The Diameter of Dense Random Regular Graphs , 2018, SODA.
[6] Allan Sly,et al. Random graphs with a given degree sequence , 2010, 1005.1136.
[7] B. Bollobás,et al. Cliques in random graphs , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.
[8] Yuval Peres,et al. Critical percolation on random regular graphs , 2007, Random Struct. Algorithms.
[9] Domingos Dellamonica,et al. An Improved Upper Bound on the Density of Universal Random Graphs , 2012, LATIN.
[10] Andrzej Ruciflski. When are small subgraphs of a random graph normally distributed , 1988 .
[11] Brendan D. McKay,et al. Asymptotic Enumeration by Degree Sequence of Graphs of High Degree , 1990, Eur. J. Comb..
[12] L. Isserlis. ON A FORMULA FOR THE PRODUCT-MOMENT COEFFICIENT OF ANY ORDER OF A NORMAL FREQUENCY DISTRIBUTION IN ANY NUMBER OF VARIABLES , 1918 .
[13] Béla Bollobás. Random Graphs: Models of Random Graphs , 2001 .
[14] E. Upfal,et al. On factors in random graphs , 1981 .
[15] F. Benaych-Georges,et al. Spectral radii of sparse random matrices , 2017, 1704.02945.
[16] Van H. Vu,et al. Spectral norm of random matrices , 2005, STOC '05.
[17] Remco van der Hofstad,et al. Counting Triangles in Power-Law Uniform Random Graphs , 2020, Electron. J. Comb..
[18] Béla Bollobás,et al. The Diameter of Random Graphs , 1981 .
[19] Béla Bollobás,et al. The chromatic number of random graphs , 1988, Comb..
[20] Madhav Desai,et al. A characterization of the smallest eigenvalue of a graph , 1994, J. Graph Theory.
[21] B. Bollobás. The evolution of random graphs , 1984 .
[22] Benny Sudakov,et al. Random regular graphs of high degree , 2001, Random Struct. Algorithms.
[23] P. Erdos,et al. On the evolution of random graphs , 1984 .
[24] Andrzej Dudek,et al. Embedding the Erdős-Rényi hypergraph into the random regular hypergraph and Hamiltonicity , 2015, J. Comb. Theory, Ser. B.
[25] J. H. Kima. Sandwiching random graphs : universality between random graph models , 2002 .
[26] Brendan D. McKay,et al. Subgraphs of Dense Random Graphs with Specified Degrees , 2010, Combinatorics, Probability and Computing.
[27] Brendan D. McKay,et al. Complex martingales and asymptotic enumeration , 2016, Random Struct. Algorithms.
[28] Bruce A. Reed,et al. A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.
[29] Alan M. Frieze,et al. Random graphs , 2006, SODA '06.
[30] Béla Bollobás,et al. A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..
[31] Brendan D. McKay,et al. Subgraphs of random graphs with specified degrees , 2011 .
[32] Alexander I. Barvinok,et al. The number of graphs and a random graph with a given degree sequence , 2010, Random Struct. Algorithms.
[33] Nicholas Wormald,et al. Enumeration of graphs with a heavy-tailed degree sequence , 2014, 1404.1250.
[34] Pu Gao. Analysis of the parallel peeling algorithm: a short proof , 2014 .
[35] Alan M. Frieze,et al. On the independence number of random graphs , 1990, Discret. Math..