The longest delay: Re-emergence of coral reef ecosystems after the Late Devonian extinctions

[1]  I. Montañez,et al.  Late Mississippian glacio-eustasy recorded in the eastern Paleo-Tethys Ocean (South China) , 2019, Palaeogeography, Palaeoclimatology, Palaeoecology.

[2]  Y. Du,et al.  Upper Viséan coral biostrome in a volcanic-sedimentary setting from the Eastern Tianshan, Northwest China , 2019, Palaeogeography, Palaeoclimatology, Palaeoecology.

[3]  M. Aretz,et al.  Earliest Carboniferous stromatolites from the Qianheishan Formation, Dashuigou section, northwestern China: Implications for microbial proliferation after the end‐Devonian mass extinction , 2019, Geological Journal.

[4]  D. Vachard,et al.  Environmental controls on the development of Mississippian microbial carbonate mounds and platform limestones in southern Montagne Noire (France) , 2019, Sedimentology.

[5]  M. Zapalski,et al.  The Silurian mesophotic coral ecosystems: 430 million years of photosymbiosis , 2018, Coral Reefs.

[6]  Bo Chen,et al.  Carboniferous integrative stratigraphy and timescale of China , 2018, Science China Earth Sciences.

[7]  M. Nicholl,et al.  Sulfur isotope change across the Early Mississippian K–O (Kinderhookian–Osagean) δ13C excursion , 2018, Earth and Planetary Science Letters.

[8]  I. Montañez,et al.  Strontium and carbon isotopic evidence for decoupling of pCO2 from continental weathering at the apex of the late Paleozoic glaciation , 2018 .

[9]  D. Maharjan,et al.  Paired carbonate-organic carbon and nitrogen isotope variations in Lower Mississippian strata of the southern Great Basin, western United States , 2018 .

[10]  M. Jakubowicz,et al.  Tabulate corals across the Frasnian/Famennian boundary: architectural turnover and its possible relation to ancient photosymbiosis , 2017 .

[11]  R. Martindale,et al.  The survival, recovery, and diversification of metazoan reef ecosystems following the end-Permian mass extinction event , 2017, Palaeogeography, Palaeoclimatology, Palaeoecology.

[12]  M. Zapalski,et al.  Deep in shadows, deep in time: the oldest mesophotic coral ecosystems from the Devonian of the Holy Cross Mountains (Poland) , 2017, Coral Reefs.

[13]  C. Waters,et al.  Mississippian reef development in the Cracoe Limestone Formation of the southern Askrigg Block, North Yorkshire, UK , 2017 .

[14]  G. Webb,et al.  Global microbial carbonate proliferation after the end-Devonian mass extinction: Mainly controlled by demise of skeletal bioconstructors , 2016, Scientific Reports.

[15]  É. Poty The Dinantian (Mississippian) succession of southern Belgium and surrounding areas: stratigraphy improvement and inferred climate reconstruction , 2016 .

[16]  L. Yao,et al.  Distribution and evolution of Carboniferous reefs in South China , 2016 .

[17]  I. Somerville,et al.  Serpukhovian coral assemblages from Idmarrach and Tirhela Formations (Adarouch, Morocco) , 2016 .

[18]  Xiang-dong Wang,et al.  Gigantoproductid brachiopod storm shell beds in the Mississippian of South China: implications for their palaeoenvironmental and palaeogeographical significances , 2016 .

[19]  Wenkun Qie,et al.  Middle Viséan (Mississippian) coral biostrome in central Guizhou, southwestern China and its palaeoclimatological implications , 2016 .

[20]  I. Montañez,et al.  Coupled sedimentary and δ13C records of late Mississippian platform-to-slope successions from South China: Insight into δ13C chemostratigraphy , 2016 .

[21]  G. Shi,et al.  Ecosystem evolution in deep time : evidence from the rich Paleozoic fossil records of China , 2016 .

[22]  M. Aretz The Kulm Facies of the Montagne Noire (Mississippian, southern France) , 2016 .

[23]  M. Aretz,et al.  The global Hangenberg Crisis (Devonian–Carboniferous transition): review of a first-order mass extinction , 2015, Special Publications.

[24]  Y. Ezaki,et al.  Cambrian Series 3 lithistid sponge–microbial reefs in Shandong Province, North China: reef development after the disappearance of archaeocyaths , 2015 .

[25]  S. Chough,et al.  The middle–late Cambrian reef transition and related geological events: A review and new view , 2015 .

[26]  C. Fielding,et al.  Onset of the glacioeustatic signal recording late Palaeozoic Gondwanan ice growth: New data from palaeotropical East Fife, Scotland , 2015 .

[27]  Bo Yang,et al.  The TICE event: Perturbation of carbon–nitrogen cycles during the mid-Tournaisian (Early Carboniferous) greenhouse–icehouse transition , 2015 .

[28]  S. Shen,et al.  A global review of the Late Mississippian (Carboniferous) Gigantoproductus (Brachiopoda) faunas and their paleogeographical, paleoecological, and paleoclimatic implications , 2015 .

[29]  A. Curtis,et al.  Ediacaran metazoan reefs from the Nama Group, Namibia , 2014, Science.

[30]  T. Torsvik,et al.  Plate tectonics in the late Paleozoic , 2014 .

[31]  S. N. Césari,et al.  A paleoclimatic review of southern South America during the late Paleozoic: A record from icehouse to extreme greenhouse conditions , 2014 .

[32]  M. Zapalski Evidence of photosymbiosis in Palaeozoic tabulate corals , 2014, Proceedings of the Royal Society B: Biological Sciences.

[33]  J. Pashin,et al.  Sponge-microbial mound facies in Mississippian Tuscumbia Limestone, Walker County, Alabama , 2013 .

[34]  W. Ausich,et al.  Mississippian crinoid biodiversity, biogeography and macroevolution , 2013 .

[35]  G. R. Mcghee,et al.  A new ecological-severity ranking of major Phanerozoic biodiversity crises , 2013 .

[36]  M. Aretz,et al.  Late Tournaisian Waulsortian‐like carbonate mud banks from South China (Longdianshan Hill, central Guangxi): preliminary investigations , 2012 .

[37]  I. Somerville,et al.  Late Viséan coral fringing reef at Tiouinine (Morocco): implications for the role of rugose corals as building organisms in the Mississippian , 2012 .

[38]  W. Yue,et al.  Foraminiferal Biostratigraphy of the Visean–Serpukhovian (Mississippian) Boundary Interval At Slope and Platform Sections In Southern Guizhou (South China) , 2012, Journal of Paleontology.

[39]  V. Ogar Carboniferous buildups in the Donets Basin (Ukraine) , 2012 .

[40]  C. Limarino,et al.  Glacial paradoxes during the late Paleozoic ice age: Evaluating the equilibrium line altitude as a control on glaciation , 2012 .

[41]  M. Benton,et al.  The timing and pattern of biotic recovery following the end-Permian mass extinction , 2012 .

[42]  P. Giles Low-latitude Ordovician to Triassic brachiopod habitat temperatures (BHTs) determined from δ18O[brachiopod calcite]: A cold hard look at ice-house tropical oceans , 2012 .

[43]  G. Escarguel,et al.  Transient metazoan reefs in the aftermath of the end-Permian mass extinction , 2011 .

[44]  J. Lipps,et al.  PHOTOSYMBIOSIS: THE DRIVING FORCE FOR REEF SUCCESS AND FAILURE , 2011 .

[45]  P. Copper 100 Million Years of Reef Prosperity and Collapse: Ordovician to Devonian Interval , 2011 .

[46]  J. Chen,et al.  Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction , 2011 .

[47]  S. N. Césari,et al.  An Upper Paleozoic bio-chronostratigraphic scheme for the western margin of Gondwana , 2011 .

[48]  M. Aretz Habitats of colonial rugose corals: the Mississippian of western Europe as example for a general classification , 2010 .

[49]  M. Aretz Rugose corals from the upper Viséan (Carboniferous) of the Jerada Massif (NE Morocco): taxonomy, biostratigraphy, facies and palaeobiogeography , 2010 .

[50]  I. Somerville,et al.  Rugose coral biostromes in the late Viséan (Mississippian) of NW Ireland: Bioevents on an extensive carbonate platform , 2010 .

[51]  W. Kiessling,et al.  Reefs as Cradles of Evolution and Sources of Biodiversity in the Phanerozoic , 2010, Science.

[52]  B. Schöne,et al.  Tropical marine climate during the late Paleozoic ice age using trace element analyses of brachiopods , 2009 .

[53]  W. Yue,et al.  Foraminiferal diversification during the late Paleozoic ice age , 2009, Paleobiology.

[54]  W. Kiessling Geologic and Biologic Controls on the Evolution of Reefs , 2009 .

[55]  S. Mazzullo,et al.  Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes , 2008 .

[56]  O. Bábek,et al.  Late Devonian–earliest Mississippian glaciation in Gondwanaland and its biogeographic consequences , 2008 .

[57]  M. Joachimski,et al.  Mississippian δ13Ccarb and conodont apatite δ18O records — Their relation to the Late Palaeozoic Glaciation , 2008 .

[58]  C. B. Cecil,et al.  Late Devonian glacial deposits from the eastern United States signal an end of the mid-Paleozoic warm period , 2008 .

[59]  C. Quesada,et al.  Oxygen isotope and Mg/Ca composition of Late Viséan (Mississippian) brachiopod shells from SW Iberia: Palaeoclimatic and palaeogeographic implications in northern Gondwana , 2008 .

[60]  J. Ogg,et al.  The Concise Geologic Time Scale , 2008 .

[61]  J. Isbell,et al.  Late Devonian and Early Carboniferous glacial records of South America , 2008 .

[62]  M. Aretz,et al.  Microbial‐sponge and microbial‐metazoan buildups in the Late Viséan basin‐fill sequence of the Jerada Massif (Carboniferous, NE Morocco) , 2008 .

[63]  I. Somerville Biostratigraphic zonation and correlation of Mississippian rocks in Western Europe: some case studies in the late Viséan/Serpukhovian , 2008 .

[64]  G. Webb,et al.  The role of microbes in reef-building communities of the Cannindah limestone (Mississippian), Monto region, Queensland, Australia , 2008 .

[65]  John Miller,et al.  Facies variation in Waulsortian buildups. Part 2; Mid-Dinantian buildups from Europe and North America , 2007 .

[66]  F. Devuyst,et al.  Upper Devonian and Mississippian foraminiferal and rugose coral zonations of Belgium and northern France: a tool for Eurasian correlations , 2006, Geological Magazine.

[67]  G. Stanley Photosymbiosis and the Evolution of Modern Coral Reefs , 2006, Science.

[68]  R. Riding Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time , 2006 .

[69]  G. Webb Quantitative Analysis and Paleoecology of Earliest Mississippian Microbial Reefs, Gudman Formation, Queensland, Australia: Not Just Post-Disaster Phenomena , 2005 .

[70]  G. Webb,et al.  Metazoan–microbial framework fabrics in a Mississippian (Carboniferous) coral–sponge–microbial reef, Monto, Queensland, Australia , 2005 .

[71]  M. Saltzman,et al.  Carbon cycle models based on extreme changes in δ13C: an example from the lower Mississippian , 2004 .

[72]  H. Pfefferkorn,et al.  A Pre-Glacial, Warm-Temperate Floral Belt in Gondwana (Late Visean, Early Carboniferous) , 2002 .

[73]  W. Oschmann,et al.  Sequence stratigraphic and genetic aspects of the Tournaisian "Liegender Alaunschiefer" and adjacent beds , 2002 .

[74]  R. Riding Structure and composition of organic reefs and carbonate mud mounds: concepts and categories , 2002 .

[75]  A. Lees,et al.  Dinantian lithostratigraphic units (Belgium) , 2002 .

[76]  L. González,et al.  Earliest Carboniferous cooling step triggered by the Antler orogeny , 2000 .

[77]  J. F. Read,et al.  Rapid onset of late Paleozoic glaciation on Gondwana: Evidence from Upper Mississippian strata of the Midcontinent, United States , 2000 .

[78]  G. Webb Youngest early carboniferous (late Visean) shallow-water patch reefs in eastern Australia (Rockhampton Group, Queensland): Combining quantitative micro- and macro-scale data , 1999 .

[79]  Eddy Poty Famennian and Tournaisian recoveries of shallow water Rugosa following late Frasnian and late Strunian major crises, southern Belgium and surrounding areas, Hunan (South China) and the Omolon region (NE Siberia) , 1999 .

[80]  W. Kiessling,et al.  Paleoreef maps; evaluation of a comprehensive database on Phanerozoic reefs , 1999 .

[81]  J. Veizer,et al.  Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics , 1999 .

[82]  H. Strauss,et al.  87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater , 1999 .

[83]  E. Grossman,et al.  Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation , 1999 .

[84]  G. Webb Earliest known Carboniferous shallow-water reefs, Gudman Formation (Tn1b), Queensland, Australia: Implications for Late Devonian reef collapse and recovery , 1998 .

[85]  A. Antoshkina Organic buildups and reefs on the Palaeozoic carbonate platform margin, Pechora Urals, Russia , 1998 .

[86]  Thomas J. Algeo,et al.  Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events , 1998 .

[87]  J. Veizer,et al.  87Sr86Sr isotopic evolution of Lower Carboniferous seawater: Dinantian of western Europe , 1995 .

[88]  S. Kershaw Classification and geological significance of biostromes , 1994 .

[89]  P. Kelley,et al.  Dead by degrees; articulate brachiopods, paleoclimate and the Mid-Carboniferous extinction event , 1990 .

[90]  J. Jackson,et al.  Clonal growth, algal symbiosis, and reef formation by corals , 1987, Paleobiology.

[91]  A. E. Adams Development of algal‐foraminiferal‐coral reefs in the Lower Carboniferous of Furness, northwest England , 1984 .

[92]  J. Denayer,et al.  Palaeoecology of the Upper Tournaisian (Mississippian) crinoidal limestones from South Belgium , 2018 .

[93]  M. Aretz,et al.  Brachiopods and rugose corals in an upper Serpukhovian (Mississippian) biostrome: preliminary results from the Djebel Arhlal (Béchar Basin, Algeria) , 2016 .

[94]  J. Denayer Viséan Lithostrotionidae (Rugosa) from Zonguldak and Bartin (NW Turkey) , 2014 .

[95]  E. Thomas,et al.  Chapter 11 – Carbon Isotope Stratigraphy , 2012 .

[96]  M. Aretz,et al.  Field trip 3: Uppermost Devonian and Lower Carboniferous of Southern Belgium , 2011 .

[97]  J. Kiehl,et al.  Understanding Earth’s Deep Past: Lessons for Our Climate Future , 2011 .

[98]  C. Fielding,et al.  The late Paleozoic ice age—A review of current understanding and synthesis of global climate patterns , 2008 .

[99]  U. Linnemann,et al.  The Rheic Ocean: Origin, Evolution, and Significance , 2008 .

[100]  M. Aretz,et al.  After the collapse of stromatoporid-coral reefs — the Famennian and Dinantian reefs of Belgium: much more than Waulsortian mounds , 2007, Geological Society, London, Special Publications.

[101]  Erik Flügel,et al.  Microfacies of Carbonate Rocks , 2004 .

[102]  P. Copper Ancient reef ecosystem expansion and collapse , 2004, Coral Reefs.

[103]  M. Aretz,et al.  Coral-rich bioconstructions in the Viséan (late Mississippian) of Southern Wales (Gower Peninsula, UK) , 2003 .

[104]  C. Scotese,et al.  Megareefs in Middle Devonian supergreenhouse climates , 2003 .

[105]  M. Aretz,et al.  Contributions of Rugose Corals to Late Viséan and Serpukhovian Bioconstructions in the Montagne Noire (southern France) , 2003 .

[106]  W. Kiessling,et al.  Patterns of Phanerozoic Reef Crises , 2002 .

[107]  Markus Aretz Habitatanalyse und Riffbildungspotential kolonialer rugoser Korallen im Unterkarbon (Mississippium) von Westeuropa , 2002 .

[108]  R. Twitchett,et al.  Extent, duration, and nature of the Permian-Triassic superanoxic event , 2002 .

[109]  G. Webb Latest Devonian and Early Carboniferous Reefs: Depressed Reef Building After the Middle Paleozoic Collapse , 2002 .

[110]  W. Kiessling Secular Variations in the Phanerozoic Reef Ecosystem , 2002 .

[111]  T. Nakazawa Carboniferous reef succession of the Panthalassan open-ocean setting: example from Omi Limestone, central Japan , 2001 .

[112]  W. Kiessling,et al.  Fluctuations in the carbonate production of Phanerozoic reefs , 2000, Geological Society, London, Special Publications.

[113]  C. Marshall,et al.  Mass Extinctions and Their Aftermath , 1997 .

[114]  G. Webb Non-Waulsortian Mississippian Bioherms: A Comparative Analysis , 1994 .

[115]  D. Mundy Microbialite-Sponge-Bryozoan-Coral Framestones in Lower Carboniferous (Late Visean) Buildups of Northern England (UK) , 1994 .

[116]  I. Somerville,et al.  A bryozoan buildup from the Lower Carboniferous of North Wales , 1988 .

[117]  P. Heckel Carbonate Buildups in the Geologic Record: A Review , 1974 .