Mechanical Properties of a New Type of Architected Interpenetrating Phase Composite Materials

[1]  Aleksandar Donev,et al.  Minimal surfaces and multifunctionality , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  L. Gibson,et al.  The mechanical behaviour of interpenetrating phase composites – I: modelling , 2000 .

[3]  L. Valdevit,et al.  Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale , 2012 .

[4]  S. Torquato,et al.  Fluid permeabilities of triply periodic minimal surfaces. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Zhiyong Tang,et al.  Nanostructured artificial nacre , 2003, Nature materials.

[6]  M. Boyce,et al.  Co‐Continuous Composite Materials for Stiffness, Strength, and Energy Dissipation , 2011, Advanced materials.

[7]  D. Stavenga,et al.  Gyroid cuticular structures in butterfly wing scales: biological photonic crystals , 2007, Journal of The Royal Society Interface.

[8]  J. Lewis,et al.  3D‐Printing of Lightweight Cellular Composites , 2014, Advanced materials.

[9]  Jennifer H. Shin,et al.  Three‐Dimensional Network Photonic Crystals via Cyclic Size Reduction/ Infiltration of Sea Urchin Exoskeleton , 2004 .

[10]  G. Mayer,et al.  Rigid Biological Systems as Models for Synthetic Composites , 2005, Science.

[11]  Jinbo Wu,et al.  A novel nano-structured interpenetrating phase composite of silicon/graphite- tin for lithium-ion rechargeable batteries anode materials , 2014 .

[12]  M. Ashby,et al.  FOAM TOPOLOGY BENDING VERSUS STRETCHING DOMINATED ARCHITECTURES , 2001 .

[13]  Interpenetrating Phase Composites , 1992 .

[14]  M. Basista,et al.  Effective elastic properties of interpenetrating phase composites , 2008 .

[15]  Zhibing Zhang,et al.  Profiting from nature: macroporous copper with superior mechanical properties. , 2007, Chemical communications.

[16]  J. Lewis,et al.  Alumina–aluminum interpenetrating-phase composites with three-dimensional periodic architecture , 2003 .

[17]  Klaus Mecke,et al.  Minimal surface scaffold designs for tissue engineering. , 2011, Biomaterials.

[18]  Xi-Qiao Feng,et al.  Mechanical properties of bioinspired bicontinuous nanocomposites , 2013 .

[19]  K. Bertoldi,et al.  Harnessing Deformation to Switch On and Off the Propagation of Sound , 2016, Advanced materials.

[20]  Diab W. Abueidda,et al.  Micromechanical finite element predictions of a reduced coefficient of thermal expansion for 3D periodic architectured interpenetrating phase composites , 2015 .

[21]  A. Palazoglu,et al.  Nanoscale heterogeneity promotes energy dissipation in bone. , 2007, Nature materials.

[22]  Richard A. Robb,et al.  Schwarz meets Schwann: Design and fabrication of biomorphic and durataxic tissue engineering scaffolds , 2006, Medical Image Anal..

[23]  F. Bates,et al.  Unifying Weak- and Strong-Segregation Block Copolymer Theories , 1996 .

[24]  M. Boyce,et al.  Materials design principles of ancient fish armour. , 2008, Nature materials.

[25]  Ming-Chuan Leu,et al.  Progress in Additive Manufacturing and Rapid Prototyping , 1998 .

[26]  E. Parthé,et al.  Vacancy short-range order in substoichiometric transition metal carbides and nitrides with the NaCl structure. II. Numerical calculation of vacancy arrangement , 1972 .

[27]  P. Greil,et al.  3D printing of Al2O3/Cu–O interpenetrating phase composite , 2011 .

[28]  J. S. Kole,et al.  Photonic band gaps in materials with triply periodic surfaces and related tubular structures , 2003 .