Quasi-linear Compressed Sensing

Inspired by significant real-life applications, particularly sparse phase retrieval and sparse pulsation frequency detection in asteroseismology, we investigate a general framework for compressed sensing, where the measurements are quasi-linear. We formulate natural generalizations of the well-known restricted isometry property (RIP) toward nonlinear measurements, which allow us to prove both unique identifiability of sparse signals as well as the convergence of recovery algorithms to compute them efficiently. We show that for certain randomized quasi-linear measurements, including Lipschitz perturbations of classical RIP matrices and phase retrieval from random projections, the proposed restricted isometry properties hold with high probability. We analyze a generalized orthogonal least squares (OLS) under the assumption that magnitudes of signal entries to be recovered decay quickly. Greed is good again, as we show that this algorithm performs efficiently in phase retrieval and asteroseismology. For situ...

[1]  Yonina C. Eldar,et al.  Phase Retrieval: Stability and Recovery Guarantees , 2012, ArXiv.

[2]  Ronny Ramlau,et al.  An iterative algorithm for nonlinear inverse problems with joint sparsity constraints in vector-valued regimes and an application to color image inpainting , 2007 .

[3]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[4]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[5]  Massimo Fornasier,et al.  Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.

[6]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[7]  Thomas Blumensath,et al.  Compressed Sensing With Nonlinear Observations and Related Nonlinear Optimization Problems , 2012, IEEE Transactions on Information Theory.

[8]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[9]  Yonina C. Eldar,et al.  GESPAR: Efficient Phase Retrieval of Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[10]  Pierre Vandergheynst,et al.  Compressed Sensing and Redundant Dictionaries , 2007, IEEE Transactions on Information Theory.

[11]  Charles Soussen,et al.  Sparse recovery conditions for Orthogonal Least Squares , 2011 .

[12]  Mike E. Davies,et al.  Gradient pursuit for non-linear sparse signal modelling , 2008, 2008 16th European Signal Processing Conference.

[13]  M. R. Osborne Finite Algorithms in Optimization and Data Analysis , 1985 .

[14]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[15]  Jared Tanner,et al.  Improved Bounds on Restricted Isometry Constants for Gaussian Matrices , 2010, SIAM J. Matrix Anal. Appl..

[16]  øöö Blockinø Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization , 2002 .

[17]  J. Drenth Principles of protein x-ray crystallography , 1994 .

[18]  Yonina C. Eldar,et al.  On conditions for uniqueness in sparse phase retrieval , 2013, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[19]  Justin K. Romberg,et al.  Restricted Isometries for Partial Random Circulant Matrices , 2010, ArXiv.

[20]  Joel A. Tropp,et al.  The restricted isometry property for time–frequency structured random matrices , 2011, ArXiv.

[21]  Michael B. Wakin,et al.  Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property , 2009, IEEE Transactions on Information Theory.

[22]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[23]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..

[24]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[25]  Sanjoy Dasgupta,et al.  An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.

[26]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[27]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[28]  F.J.M. Barning,et al.  The numerical analysis of the light-curve of 12 lacertae : (bulletin of the astronomical institute of the netherlands, _1_7(1963), p 22-28) , 1963 .

[29]  Peter G. Casazza,et al.  Phase retrieval , 2015, SPIE Optical Engineering + Applications.

[30]  Jared Tanner,et al.  Phase Transitions for Greedy Sparse Approximation Algorithms , 2010, ArXiv.

[31]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[32]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[33]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[34]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[35]  Marco Donatelli,et al.  Multilevel Gauss–Newton methods for phase retrieval problems , 2006 .

[36]  Donald Goldfarband Shiqian CONVERGENCE OF FIXED POINT CONTINUATION ALGORITHMS FOR MATRIX RANK MINIMIZATION , 2010 .

[37]  R. Ramlau,et al.  A Projection Iteration for Nonlinear Operator Equations with Sparsity Constraints , 2006 .

[38]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[39]  S. Sastry,et al.  Compressive Phase Retrieval From Squared Output Measurements Via Semidefinite Programming , 2011, 1111.6323.

[40]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[41]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[42]  Albert Cohen,et al.  Finding the Minimum of a Function , 2013 .

[43]  Christine Bachoc,et al.  Signal Reconstruction From the Magnitude of Subspace Components , 2012, IEEE Transactions on Information Theory.

[44]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[45]  M. Fornasier,et al.  Iterative thresholding algorithms , 2008 .

[46]  Massimo Fornasier,et al.  Recovery Algorithms for Vector-Valued Data with Joint Sparsity Constraints , 2008, SIAM J. Numer. Anal..

[47]  Shiqian Ma,et al.  Convergence of Fixed-Point Continuation Algorithms for Matrix Rank Minimization , 2009, Found. Comput. Math..

[48]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[49]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[50]  Vladimir N. Temlyakov,et al.  On performance of greedy algorithms , 2011, J. Approx. Theory.

[51]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[52]  Yonina C. Eldar,et al.  Sparsity Constrained Nonlinear Optimization: Optimality Conditions and Algorithms , 2012, SIAM J. Optim..