Towards a sustainable exploitation of the geosynchronous orbital region

In this work the orbital dynamics of Earth satellites about the geosynchronous altitude are explored, with primary goal to assess current mitigation guidelines as well as to discuss the future exploitation of the region. A thorough dynamical mapping was conducted in a high-definition grid of orbital elements, enabled by a fast and accurate semi-analytical propagator, which considers all the relevant perturbations. The results are presented in appropriately selected stability maps to highlight the underlying mechanisms and their interplay, which can lead to stable graveyard orbits or fast re-entry pathways. The natural separation of the long-term evolution between equatorial and inclined satellites is discussed in terms of post-mission disposal strategies. Moreover, we confirm the existence of an effective cleansing mechanism for inclined geosynchronous satellites and discuss its implications in terms of current guidelines as well as alternative mission designs that could lead to a sustainable use of the geosynchronous orbital region.

[1]  Geostationary secular dynamics revisited: application to high area-to-mass ratio objects , 2016, 1611.08916.

[2]  G. Pucacco,et al.  Analytical development of the lunisolar disturbing function and the critical inclination secular resonance , 2015, 1511.03567.

[3]  Jean H. Meeus,et al.  Astronomical Algorithms , 1991 .

[4]  M. L. Lidov The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies , 1962 .

[5]  W. Borczyk,et al.  Regular and chaotic motion of high altitude satellites , 2007 .

[6]  Alessandro Rossi,et al.  Galileo disposal strategy: stability, chaos and predictability , 2015, 1512.05822.

[7]  C. Colombo Long-Term Evolution of Highly-Elliptical Orbits: Luni-Solar Perturbation Effects for Stability and Re-entry , 2019, Front. Astron. Space Sci..

[8]  G. Beutler,et al.  Optical observations of space debris in GEO and in highly-eccentric orbits , 2002 .

[9]  Henry J. Pernicka,et al.  Tundra Constellation Design and Stationkeeping , 2005 .

[10]  Nicholas L. Johnson,et al.  Space Debris Mitigation Guidelines , 2011 .

[11]  Long-term evolution of orbits about a precessing oblate planet. 2. The case of variable precession , 2006, astro-ph/0607522.

[12]  M. Lane On analytic modeling of lunar perturbations of artificial satellites of the earth , 1989 .

[13]  T. Lederle,et al.  Expressions for the precession quantities based upon the IAU /1976/ system of astronomical constants , 1977 .

[14]  Alessandro Rossi,et al.  The dynamical structure of the MEO region: long-term stability, chaos, and transport , 2015, 1507.06170.

[15]  Luni-solar effects of geosynchronous orbits at the critical inclination , 1993 .

[16]  G. Voyatzis,et al.  Dynamical cartography of Earth satellite orbits , 2019, Advances in Space Research.

[17]  M. Mejía-Kaiser IADC Space Debris Mitigation Guidelines , 2020, The Geostationary Ring.

[18]  Alessandro Rossi,et al.  A numerical investigation on the eccentricity growth of GNSS disposal orbits , 2016 .

[19]  G. Voyatzis,et al.  CARTOGRAPHIC STUDY OF THE MEO PHASE SPACE FOR PASSIVE DEBRIS REMOVAL , 2017 .

[20]  W. M. Kaula Development of the lunar and solar disturbing functions for a close satellite , 1962 .

[22]  Oliver Montenbruck,et al.  Satellite Orbits: Models, Methods and Applications , 2000 .

[23]  Alessandro Rossi,et al.  Chaos in navigation satellite orbits caused by the perturbed motion of the Moon , 2015, 1503.02581.

[24]  Roberto Armellin,et al.  Optimal Earth's reentry disposal of the Galileo constellation , 2017 .

[26]  C. Colombo PLANETARY ORBITAL DYNAMICS (PLANODYN) SUITE FOR LONG TERM PROPAGATION IN PERTURBED ENVIRONMENT , 2016 .

[27]  Yoshihide Kozai,et al.  Secular perturbations of asteroids with high inclination and eccentricity , 1962 .

[28]  Dirk Brouwer,et al.  SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG , 1959 .

[29]  I. Gkolias,et al.  Drift and Its Mediation in Terrestrial Orbits , 2018, Front. Appl. Math. Stat..

[30]  Aurelie Moussi,et al.  End of Life Operations for LEO and GEO Satellites: 30 Years of Continuous Improvement , 2013 .

[31]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[32]  Rong-yu Sun,et al.  Long-term dynamical evolution of Tundra-type orbits , 2017 .

[33]  A. Morbidelli,et al.  Luni-solar effects of geosynchronous orbits at the critical inclination , 1993 .

[34]  P. Goldreich Inclination of satellite orbits about an oblate precessing planet , 1965 .

[35]  Juan Getino,et al.  ORBITAL EVOLUTION OF HIGH-ALTITUDE BALLOON SATELLITES , 1997 .

[36]  G. B. Valsecchi,et al.  Solar radiation pressure resonances in Low Earth Orbits , 2017, 1709.09895.

[37]  Alessandro Rossi,et al.  ReDSHIFT: A Global Approach to Space Debris Mitigation , 2018, Aerospace.

[38]  Alessandra Celletti,et al.  On the Dynamics of Space Debris: 1:1 and 2:1 Resonances , 2014, J. Nonlinear Sci..

[39]  P. Gurfil Effect of Equinoctial Precession on Geosynchronous Earth Satellites , 2007 .

[40]  Long-Term Evolution of Orbits About A Precessing Oblate Planet: 1. The Case of Uniform Precession , 2004, astro-ph/0408168.

[41]  Roberto Armellin,et al.  End-of-life disposal of high elliptical orbit missions: The case of INTEGRAL , 2015 .

[42]  Hiroshi Kinoshita,et al.  Effects of motion of the equatorial plane on the orbital elements of an earth satellite , 1973 .

[43]  B. Melendo,et al.  Long-term predictability of orbits around the geosynchronous altitude , 2005 .

[44]  Aaron J. Rosengren,et al.  FROM ORDER TO CHAOS IN EARTH SATELLITE ORBITS , 2016, 1606.04180.

[45]  N. Delsate,et al.  Global dynamics of high area-to-mass ratios GEO space debris by means of the MEGNO indicator , 2008, 0810.1859.

[46]  Antonio Elipe,et al.  Periodic Orbits Around Geostationary Positions , 2001 .

[47]  Alessandro Rossi,et al.  Natural highways for end-of-life solutions in the LEO region , 2018, 1805.05726.

[48]  J.J.F. Liu,et al.  Semianalytic Theory for a Close-Earth Artificial Satellite , 1980 .

[49]  W. M. Kaula,et al.  Theory of Satellite Geodesy: Applications of Satellites to Geodesy , 2000 .