Towards a sustainable exploitation of the geosynchronous orbital region
暂无分享,去创建一个
[1] Geostationary secular dynamics revisited: application to high area-to-mass ratio objects , 2016, 1611.08916.
[2] G. Pucacco,et al. Analytical development of the lunisolar disturbing function and the critical inclination secular resonance , 2015, 1511.03567.
[3] Jean H. Meeus,et al. Astronomical Algorithms , 1991 .
[4] M. L. Lidov. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies , 1962 .
[5] W. Borczyk,et al. Regular and chaotic motion of high altitude satellites , 2007 .
[6] Alessandro Rossi,et al. Galileo disposal strategy: stability, chaos and predictability , 2015, 1512.05822.
[7] C. Colombo. Long-Term Evolution of Highly-Elliptical Orbits: Luni-Solar Perturbation Effects for Stability and Re-entry , 2019, Front. Astron. Space Sci..
[8] G. Beutler,et al. Optical observations of space debris in GEO and in highly-eccentric orbits , 2002 .
[9] Henry J. Pernicka,et al. Tundra Constellation Design and Stationkeeping , 2005 .
[10] Nicholas L. Johnson,et al. Space Debris Mitigation Guidelines , 2011 .
[11] Long-term evolution of orbits about a precessing oblate planet. 2. The case of variable precession , 2006, astro-ph/0607522.
[12] M. Lane. On analytic modeling of lunar perturbations of artificial satellites of the earth , 1989 .
[13] T. Lederle,et al. Expressions for the precession quantities based upon the IAU /1976/ system of astronomical constants , 1977 .
[14] Alessandro Rossi,et al. The dynamical structure of the MEO region: long-term stability, chaos, and transport , 2015, 1507.06170.
[15] Luni-solar effects of geosynchronous orbits at the critical inclination , 1993 .
[16] G. Voyatzis,et al. Dynamical cartography of Earth satellite orbits , 2019, Advances in Space Research.
[17] M. Mejía-Kaiser. IADC Space Debris Mitigation Guidelines , 2020, The Geostationary Ring.
[18] Alessandro Rossi,et al. A numerical investigation on the eccentricity growth of GNSS disposal orbits , 2016 .
[19] G. Voyatzis,et al. CARTOGRAPHIC STUDY OF THE MEO PHASE SPACE FOR PASSIVE DEBRIS REMOVAL , 2017 .
[20] W. M. Kaula. Development of the lunar and solar disturbing functions for a close satellite , 1962 .
[22] Oliver Montenbruck,et al. Satellite Orbits: Models, Methods and Applications , 2000 .
[23] Alessandro Rossi,et al. Chaos in navigation satellite orbits caused by the perturbed motion of the Moon , 2015, 1503.02581.
[24] Roberto Armellin,et al. Optimal Earth's reentry disposal of the Galileo constellation , 2017 .
[26] C. Colombo. PLANETARY ORBITAL DYNAMICS (PLANODYN) SUITE FOR LONG TERM PROPAGATION IN PERTURBED ENVIRONMENT , 2016 .
[27] Yoshihide Kozai,et al. Secular perturbations of asteroids with high inclination and eccentricity , 1962 .
[28] Dirk Brouwer,et al. SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG , 1959 .
[29] I. Gkolias,et al. Drift and Its Mediation in Terrestrial Orbits , 2018, Front. Appl. Math. Stat..
[30] Aurelie Moussi,et al. End of Life Operations for LEO and GEO Satellites: 30 Years of Continuous Improvement , 2013 .
[31] R. Battin. An introduction to the mathematics and methods of astrodynamics , 1987 .
[32] Rong-yu Sun,et al. Long-term dynamical evolution of Tundra-type orbits , 2017 .
[33] A. Morbidelli,et al. Luni-solar effects of geosynchronous orbits at the critical inclination , 1993 .
[34] P. Goldreich. Inclination of satellite orbits about an oblate precessing planet , 1965 .
[35] Juan Getino,et al. ORBITAL EVOLUTION OF HIGH-ALTITUDE BALLOON SATELLITES , 1997 .
[36] G. B. Valsecchi,et al. Solar radiation pressure resonances in Low Earth Orbits , 2017, 1709.09895.
[37] Alessandro Rossi,et al. ReDSHIFT: A Global Approach to Space Debris Mitigation , 2018, Aerospace.
[38] Alessandra Celletti,et al. On the Dynamics of Space Debris: 1:1 and 2:1 Resonances , 2014, J. Nonlinear Sci..
[39] P. Gurfil. Effect of Equinoctial Precession on Geosynchronous Earth Satellites , 2007 .
[40] Long-Term Evolution of Orbits About A Precessing Oblate Planet: 1. The Case of Uniform Precession , 2004, astro-ph/0408168.
[41] Roberto Armellin,et al. End-of-life disposal of high elliptical orbit missions: The case of INTEGRAL , 2015 .
[42] Hiroshi Kinoshita,et al. Effects of motion of the equatorial plane on the orbital elements of an earth satellite , 1973 .
[43] B. Melendo,et al. Long-term predictability of orbits around the geosynchronous altitude , 2005 .
[44] Aaron J. Rosengren,et al. FROM ORDER TO CHAOS IN EARTH SATELLITE ORBITS , 2016, 1606.04180.
[45] N. Delsate,et al. Global dynamics of high area-to-mass ratios GEO space debris by means of the MEGNO indicator , 2008, 0810.1859.
[46] Antonio Elipe,et al. Periodic Orbits Around Geostationary Positions , 2001 .
[47] Alessandro Rossi,et al. Natural highways for end-of-life solutions in the LEO region , 2018, 1805.05726.
[48] J.J.F. Liu,et al. Semianalytic Theory for a Close-Earth Artificial Satellite , 1980 .
[49] W. M. Kaula,et al. Theory of Satellite Geodesy: Applications of Satellites to Geodesy , 2000 .