Advanced lightweight materials and manufacturing processes for automotive applications

The global automotive industry is facing challenges in several key areas, including energy, emissions, safety, and affordability. Lightweighting is one of the key strategies used to address these challenges. Maximizing the weight reduction (i.e., minimizing vehicle weight) requires a systems-engineering design optimization and iteration process that combines material properties and manufacturing processes to meet product requirements at the lowest mass and/or cost. Advanced high-strength steels, aluminum and magnesium alloys, and carbon-fiber-reinforced polymers have emerged as important materials for automotive lightweighting. This article presents examples of how coupling materials science with innovative manufacturing processes can provide lightweight solutions in automotive engineering.

[1]  A. Franke,et al.  High-pressure die-cast (HPDC) aluminium alloys for automotive applications , 2012 .

[2]  Markus Kaufmann,et al.  Cost/Weight Optimization of Aircraft Structures , 2008 .

[3]  D. Matlock,et al.  Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel , 2011 .

[4]  Sujit Das,et al.  THE COST OF AUTOMOTIVE POLYMER COMPOSITES: A REVIEW AND ASSESSMENT OF DOE'S LIGHTWEIGHT MATERIALS COMPOSITES RESEARCH , 2001 .

[5]  William E. Mercer Magnesium Die Cast Alloys for Elevated Temperature Applications , 1990 .

[6]  John A. Taylor,et al.  Interactions between iron, manganese, and the Al-Si eutectic in hypoeutectic Al-Si alloys , 2006 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  A. Davenport Formable HSLA and dual-phase steels : proceedings of a symposium , 1979 .

[9]  Ryutaro Fukushima CARBON FIBERS , 2002 .

[10]  William J. Joost,et al.  Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering , 2012 .

[11]  Ignace Verpoest,et al.  Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites , 2009 .

[12]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[13]  Larry J. Ouimet,et al.  Development of the 2006 Corvette Z06 Structural Cast Magnesium Crossmember , 2005 .

[14]  Paul J. Gibbs,et al.  JESTECH RECENT DEVELOPMENTS IN ADVANCED HIGH STRENGTH SHEET STEELS FOR AUTOMOTIVE APPLICATIONS : AN OVERVIEW * , 2012 .

[15]  Alan A. Luo,et al.  Application of Computational Thermodynamics and Calphad in Magnesium Alloy Development , 2013, ICME 2013.

[16]  Ronald F. Gibson,et al.  A review of recent research on mechanics of multifunctional composite materials and structures , 2010 .

[17]  Rueben L. Smith High-Volume SMC Exterior Body Panels - An Evolution in Productivity , 1988 .

[18]  Ji-Cheng Zhao Methods for phase diagram determination , 2007 .

[19]  W. A. Oates,et al.  Phase diagram calculation: past, present and future , 2004 .

[20]  L. Ceschini,et al.  Microstructure, tensile and fatigue properties of the Al–10%Si–2%Cu alloy with different Fe and Mn content cast under controlled conditions , 2009 .

[21]  F. S. Baker,et al.  On the characterization and spinning of an organic‐purified lignin toward the manufacture of low‐cost carbon fiber , 2012 .

[22]  John A. Taylor,et al.  Iron-containing intermetallic phases in Al-Si based casting alloys , 2012 .

[23]  George S. May The Automobile industry, 1896-1920 , 1990 .

[24]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[25]  Dino Triantos,et al.  Design and Fabrication of an Aluminum Engine Cradle for a General Motors Vehicle , 1999 .

[26]  Rick A. Borns,et al.  Optimizing Designs of Aluminum Suspension Components Using an Integrated Approach , 2005 .

[27]  Larry Kaufman,et al.  Computer calculation of phase diagrams with special reference to refractory metals , 1970 .

[28]  Y. Chang,et al.  CHAPTER EIGHT – APPLICATION OF COMPUTATIONAL THERMODYNAMICS TO RAPIDLY DETERMINE MULTICOMPONENT PHASE DIAGRAMS , 2007 .

[29]  A. Díez-Pascual,et al.  Multiscale fiber-reinforced thermoplastic composites incorporating carbon nanotubes: A review , 2014 .

[30]  K. Holtman,et al.  Lignin-based carbon fibers: Oxidative thermostabilization of kraft lignin , 2005 .

[31]  Satoshi Kubo,et al.  Lignin-based carbon fibers for composite fiber applications , 2002 .

[32]  Jason D. Rowe,et al.  Advanced materials in automotive engineering , 2012 .

[33]  D. Matlock,et al.  Processing Opportunities for New Advanced High-Strength Sheet Steels , 2010 .

[34]  Edward J. Vinarcik,et al.  High Integrity Die Casting Processes , 2002 .

[35]  K. Easterling,et al.  Phase Transformations in Metals and Alloys , 2021 .

[36]  Richard Roth,et al.  Mass Decompounding and Vehicle Lightweighting , 2009 .

[37]  A. Luo,et al.  The evolution of technology for materials processing over the last 50 years: The automotive example , 2007 .

[38]  F. Field,et al.  Strategic Materials Selection In The Automobile Body: Economic Opportunities for Polymer Composite Design , 2008 .

[39]  Zi-kui Liu First-Principles Calculations and CALPHAD Modeling of Thermodynamics , 2009 .

[40]  Chunxiang Lu,et al.  Polyacrylonitrile/lignin sulfonate blend fiber for low-cost carbon fiber , 2015 .