Bioengineered tunable memristor based on protein nanocage.

Bioengineered protein-based nanodevices with tunable and reproducible memristive performance are fabricated by combining the unique high loading capacity of Archaeoglobus fulgidus ferritin with OWL-generated nanogaps. By tuning the iron amount inside ferritin, the ON/OFF ratio of conductance switching can be modulated accordingly. Higher molecular loading exhibits better memristive performance owing to the higher electrochemical activity of the ferric complex core.

[1]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[2]  C. Mirkin,et al.  Sub-5-nm gaps prepared by on-wire lithography: correlating gap size with electrical transport. , 2007, Small.

[3]  F. Huo,et al.  On-wire lithography-generated molecule-based transport junctions: a new testbed for molecular electronics. , 2008, Journal of the American Chemical Society.

[4]  M. Ratner,et al.  Chemical fabrication of heterometallic nanogaps for molecular transport junctions. , 2009, Nano letters.

[5]  Jeffrey W. Baldwin,et al.  UNIMOLECULAR ELECTRICAL RECTIFICATION IN HEXADECYLQUINOLINIUM TRICYANOQUINODIMETHANIDE , 1997 .

[6]  D. Zapien,et al.  Electrochemical Characterization of Horse Spleen Ferritin Covalently Immobilized on Self‐Assembled Monolayer Modified Gold Electrodes , 2009 .

[7]  Ian A. Walmsley,et al.  Quantum Physics Under Control , 2003 .

[8]  H. Fink,et al.  Electrical conduction through DNA molecules , 1999, Nature.

[9]  Rainer Waser,et al.  Complementary resistive switches for passive nanocrossbar memories. , 2010, Nature materials.

[10]  Itamar Willner,et al.  Biomolecule-nanoparticle hybrids as functional units for nanobiotechnology. , 2007, Chemical communications.

[11]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[12]  L. Chua Memristor-The missing circuit element , 1971 .

[13]  Chad A Mirkin,et al.  On-wire lithography: synthesis, encoding and biological applications , 2009, Nature Protocols.

[14]  M. K. Hota,et al.  A Natural Silk Fibroin Protein‐Based Transparent Bio‐Memristor , 2012 .

[15]  D. Zapien,et al.  Electron transfer of horse spleen ferritin at gold electrodes modified by self-assembled monolayers , 1997 .

[16]  Chad A Mirkin,et al.  On-Wire Lithography , 2005, Science.

[17]  Elizabeth C. Theil Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. , 1987, Annual review of biochemistry.

[18]  H. Hng,et al.  Photo-modulable molecular transport junctions based on organometallic molecular wires , 2012 .

[19]  Yang Yang,et al.  Polyaniline nanofiber/gold nanoparticle nonvolatile memory. , 2005, Nano letters.

[20]  Nikolai Lebedev,et al.  Integration of Photosynthetic Protein Molecular Complexes in Solid-State Electronic Devices , 2004 .

[21]  M. Ratner,et al.  Electron Transport in Molecular Wire Junctions , 2003, Science.

[22]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[23]  H. Hng,et al.  Protein-based memristive nanodevices. , 2011, Small.

[24]  C. Poh,et al.  Iron-based ferritin nanocore as a contrast agent a) , 2010, Biointerphases.

[25]  Jonas I. Goldsmith,et al.  Coulomb blockade and the Kondo effect in single-atom transistors , 2002, Nature.

[26]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[27]  M. Sawaya,et al.  Crystal structures of a tetrahedral open pore ferritin from the hyperthermophilic archaeon Archaeoglobus fulgidus. , 2005, Structure.

[28]  Hongkun Park,et al.  Kondo resonance in a single-molecule transistor , 2002, Nature.

[29]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[30]  P. Tsao,et al.  A human ferritin iron oxide nano‐composite magnetic resonance contrast agent , 2008, Magnetic resonance in medicine.

[31]  Kaustubh Bhalerao,et al.  Nanodevice design through the functional abstraction of biological macromolecules , 2005 .