Structural Plasticity of NFU1 Upon Interaction with Binding Partners: Insights into the Mitochondrial [4Fe-4S] Cluster Pathway

[1]  L. Banci,et al.  Molecular Basis of Rare Diseases Associated to the Maturation of Mitochondrial [4Fe-4S]-Containing Proteins , 2022, Biomolecules.

[2]  L. Banci,et al.  Protein-Interaction Affinity Gradient Drives [4Fe–4S] Cluster Insertion in Human Lipoyl Synthase , 2022, Journal of the American Chemical Society.

[3]  D. Winge,et al.  N-terminal tyrosine of ISCU2 triggers [2Fe-2S] cluster synthesis by ISCU2 dimerization , 2021, Nature Communications.

[4]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[5]  Z. Dosztányi,et al.  IUPred3: prediction of protein disorder enhanced with unambiguous experimental annotation and visualization of evolutionary conservation , 2021, Nucleic Acids Res..

[6]  L. Banci,et al.  Molecular Basis of Multiple Mitochondrial Dysfunctions Syndrome 2 Caused by CYS59TYR BOLA3 Mutation , 2021, International journal of molecular sciences.

[7]  D. Svergun,et al.  Comment on the Optimal Parameters to Derive Intrinsically Disordered Protein Conformational Ensembles from Small-Angle X-ray Scattering Data Using the Ensemble Optimization Method. , 2021, Journal of chemical theory and computation.

[8]  L. Banci,et al.  ISCA1 orchestrates ISCA2 and NFU1 in the maturation of human mitochondrial [4Fe-4S] proteins. , 2021, Journal of molecular biology.

[9]  Maxim V. Petoukhov,et al.  ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis , 2021, Journal of applied crystallography.

[10]  D. Svergun,et al.  Adding Size Exclusion Chromatography (SEC) and Light Scattering (LS) Devices to Obtain High-Quality Small Angle X-Ray Scattering (SAXS) Data , 2020, Crystals.

[11]  R. Lill,et al.  Mitochondrial [4Fe-4S] protein assembly involves reductive [2Fe-2S] cluster fusion on ISCA1–ISCA2 by electron flow from ferredoxin FDX2 , 2020, Proceedings of the National Academy of Sciences.

[12]  Anamika Singh,et al.  Assembly of the [4Fe-4S] cluster of NFU1 requires the coordinated donation of two [2Fe-2S] clusters from the scaffold proteins, ISCU2 and ISCA1. , 2020, Human molecular genetics.

[13]  T. Rouault,et al.  Outlining the Complex Pathway of Mammalian Fe-S Cluster Biogenesis. , 2020, Trends in biochemical sciences.

[14]  J. Markley,et al.  ISCU interacts with NFU1, and ISCU[4Fe-4S] transfers its Fe-S cluster to NFU1 leading to the production of holo-NFU1 , 2020, Journal of structural biology.

[15]  R. Lill,et al.  Mechanisms of Mitochondrial Iron-Sulfur Protein Biogenesis. , 2020, Annual review of biochemistry.

[16]  N. Rouhier,et al.  The plastidial Arabidopsis thaliana NFU1 protein binds and delivers [4Fe-4S] clusters to specific client proteins , 2020, The Journal of Biological Chemistry.

[17]  D. Svergun,et al.  Structural properties of [2Fe-2S] ISCA2-IBA57: a complex of the mitochondrial iron-sulfur cluster assembly machinery , 2019, Scientific Reports.

[18]  L. Banci,et al.  A pathway for assembling [4Fe‐4S]2+ clusters in mitochondrial iron–sulfur protein biogenesis , 2019, The FEBS journal.

[19]  L. Banci,et al.  Paramagnetic 1H NMR Spectroscopy to Investigate the Catalytic Mechanism of Radical S-Adenosylmethionine Enzymes. , 2019, Journal of molecular biology.

[20]  D. Barondeau,et al.  Mechanism of activation of the human cysteine desulfurase complex by frataxin , 2019, Proceedings of the National Academy of Sciences.

[21]  M. Toledano,et al.  Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin , 2019, Nature Communications.

[22]  L. Banci,et al.  IBA57 Recruits ISCA2 to Form a [2Fe-2S] Cluster-Mediated Complex. , 2018, Journal of the American Chemical Society.

[23]  L. Banci,et al.  Correction to: The NMR contribution to protein–protein networking in Fe–S protein maturation , 2018, JBIC Journal of Biological Inorganic Chemistry.

[24]  L. Banci,et al.  Protein networks in the maturation of human iron-sulfur proteins. , 2018, Metallomics : integrated biometal science.

[25]  Dmitri I. Svergun,et al.  CHROMIXS: automatic and interactive analysis of chromatography-coupled small-angle X-ray scattering data , 2017, Bioinform..

[26]  M. Cygler,et al.  Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex , 2017, Nature Communications.

[27]  L. Banci,et al.  Structural insights into the molecular function of human [2Fe-2S] BOLA1-GRX5 and [2Fe-2S] BOLA3-GRX5 complexes. , 2017, Biochimica et biophysica acta. General subjects.

[28]  P. V. Konarev,et al.  ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions , 2017, Journal of applied crystallography.

[29]  Marjorie Fournier,et al.  ISCA1 is essential for mitochondrial Fe4S4 biogenesis in vivo , 2017, Nature Communications.

[30]  E. Novellino,et al.  [4Fe-4S] Cluster Assembly in Mitochondria and Its Impairment by Copper. , 2017, Journal of the American Chemical Society.

[31]  Gaohua Liu,et al.  Structural/Functional Properties of Human NFU1, an Intermediate [4Fe-4S] Carrier in Human Mitochondrial Iron-Sulfur Cluster Biogenesis. , 2016, Structure.

[32]  D. Winge,et al.  Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients , 2016, eLife.

[33]  D. Svergun,et al.  Rapid automated superposition of shapes and macromolecular models using spherical harmonics , 2016, Journal of applied crystallography.

[34]  Roland Zengerle,et al.  Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY) , 2015, Journal of applied crystallography.

[35]  Dmitri I. Svergun,et al.  Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering , 2015, IUCrJ.

[36]  E. Novellino,et al.  Formation of [4Fe-4S] clusters in the mitochondrial iron-sulfur cluster assembly machinery. , 2014, Journal of the American Chemical Society.

[37]  L. Banci,et al.  [2Fe-2S] cluster transfer in iron–sulfur protein biogenesis , 2014, Proceedings of the National Academy of Sciences.

[38]  Dmitri I. Svergun,et al.  Automated acquisition and analysis of small angle X-ray scattering data , 2012 .

[39]  H. Elsässer,et al.  The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation , 2012, Molecular biology of the cell.

[40]  Maxim V. Petoukhov,et al.  New developments in the ATSAS program package for small-angle scattering data analysis , 2012, Journal of applied crystallography.

[41]  Marta A. Uzarska,et al.  A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. , 2011, American journal of human genetics.

[42]  E. Shoubridge,et al.  Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. , 2011, American journal of human genetics.

[43]  I. Bertini,et al.  Anamorsin is a [2Fe-2S] cluster-containing substrate of the Mia40-dependent mitochondrial protein trapping machinery. , 2011, Chemistry & biology.

[44]  Dmitri I. Svergun,et al.  Electronic Reprint Applied Crystallography Dammif, a Program for Rapid Ab-initio Shape Determination in Small-angle Scattering Applied Crystallography Dammif, a Program for Rapid Ab-initio Shape Determination in Small-angle Scattering , 2022 .

[45]  E. Yamashita,et al.  The asymmetric IscA homodimer with an exposed [2Fe-2S] cluster suggests the structural basis of the Fe-S cluster biosynthetic scaffold. , 2006, Journal of molecular biology.

[46]  Y. Hasegawa,et al.  Crystal structure of Escherichia coli SufA involved in biosynthesis of iron–sulfur clusters: Implications for a functional dimer , 2005, FEBS letters.

[47]  J. Silberg,et al.  Crystal structure of IscA, an iron-sulfur cluster assembly protein from Escherichia coli. , 2004, Journal of molecular biology.

[48]  T. Rouault,et al.  Subcellular compartmentalization of human Nfu, an iron–sulfur cluster scaffold protein, and its ability to assemble a [4Fe–4S] cluster , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Dmitri I. Svergun,et al.  Uniqueness of ab initio shape determination in small-angle scattering , 2003 .

[50]  Dmitri I. Svergun,et al.  Automated matching of high- and low-resolution structural models , 2001 .

[51]  C. Krebs,et al.  IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. , 2000, Biochemistry.

[52]  F. Capozzi,et al.  Three-dimensional structure of the reduced C77S mutant of the Chromatium vinosum high-potential iron-sulfur protein through nuclear magnetic resonance: comparison with the solution structure of the wild-type protein. , 1996, Biochemistry.

[53]  D. Svergun,et al.  CRYSOL : a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates , 1995 .

[54]  F. Capozzi,et al.  1H-NMR investigation of oxidized and reduced high-potential iron-sulfur protein from Rhodopseudomonas globiformis. , 1993, European journal of biochemistry.

[55]  Dmitri I. Svergun,et al.  Determination of the regularization parameter in indirect-transform methods using perceptual criteria , 1992 .

[56]  D. Winge,et al.  Steps Toward Understanding Mitochondrial Fe/S Cluster Biogenesis. , 2018, Methods in enzymology.

[57]  E. Bertini,et al.  ISCA1 mutation in a patient with infantile-onset leukodystrophy causes defects in mitochondrial [4Fe–4S] proteins , 2018, Human molecular genetics.

[58]  T. Inubushi,et al.  Efficient detection of paramagnetically shifted NMR resonances by optimizing the WEFT pulse sequence , 1983 .