Regularized Tree Partitioning and Its Application to Unsupervised Image Segmentation

In this paper, we propose regularized tree partitioning approaches. We study normalized cut (NCut) and average cut (ACut) criteria over a tree, forming two approaches: 1) normalized tree partitioning (NTP) and 2) average tree partitioning (ATP). We give the properties that result in an efficient algorithm for NTP and ATP. In addition, we present the relations between the solutions of NTP and ATP over the maximum weight spanning tree of a graph and NCut and ACut over this graph. To demonstrate the effectiveness of the proposed approaches, we show its application to image segmentation over the Berkeley image segmentation data set and present qualitative and quantitative comparisons with state-of-the-art methods.

[1]  Olivier Monga,et al.  An Optimal Region Growing Algorithm for Image Segmentation , 1987, Int. J. Pattern Recognit. Artif. Intell..

[2]  Hong Zhang,et al.  An evaluation metric for image segmentation of multiple objects , 2009, Image Vis. Comput..

[3]  Allen Y. Yang,et al.  Unsupervised segmentation of natural images via lossy data compression , 2008, Comput. Vis. Image Underst..

[4]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Helen C. Shen,et al.  Linear Neighborhood Propagation and Its Applications , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  T. Pavlidis,et al.  A graph-theoretic approach to picture processing , 1978 .

[7]  Leo Grady,et al.  Isoperimetric graph partitioning for image segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[9]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Jianbo Shi,et al.  Spectral segmentation with multiscale graph decomposition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[12]  Claude L. Fennema,et al.  Scene Analysis Using Regions , 1970, Artif. Intell..

[13]  Long Quan,et al.  Normalized tree partitioning for image segmentation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Theodosios Pavlidis,et al.  Picture Segmentation by a Tree Traversal Algorithm , 1976, JACM.

[15]  Martial Hebert,et al.  Toward Objective Evaluation of Image Segmentation Algorithms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Ingemar J. Cox,et al.  "Ratio regions": a technique for image segmentation , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[17]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[18]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[19]  智一 吉田,et al.  Efficient Graph-Based Image Segmentationを用いた圃場図自動作成手法の検討 , 2014 .

[20]  Jingdong Wang Graph Based Image Segmentation: A modern approach , 2008 .

[21]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[22]  Roderick Urquhart,et al.  Graph theoretical clustering based on limited neighbourhood sets , 1982, Pattern Recognit..

[23]  Dorit S. Hochbaum Polynomial Time Algorithms for Ratio Regions and a Variant of Normalized Cut , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Jianbo Shi,et al.  Multiclass spectral clustering , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[25]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[26]  Xian-Sheng Hua,et al.  Augmented tree partitioning for interactive image segmentation , 2008, 2008 15th IEEE International Conference on Image Processing.

[27]  Jeffrey Mark Siskind,et al.  Image Segmentation with Ratio Cut , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[29]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Richard M. Leahy,et al.  An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[32]  Hongbin Zha,et al.  Optimizing kd-trees for scalable visual descriptor indexing , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  Laurent Najman,et al.  On the Equivalence Between Hierarchical Segmentations and Ultrametric Watersheds , 2010, Journal of Mathematical Imaging and Vision.

[34]  Hervé Le Men,et al.  Scale-Sets Image Analysis , 2005, International Journal of Computer Vision.

[35]  Xavier Cufí,et al.  Yet Another Survey on Image Segmentation: Region and Boundary Information Integration , 2002, ECCV.

[36]  Ian H. Jermyn,et al.  Globally Optimal Regions and Boundaries as Minimum Ratio Weight Cycles , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Marina Meila,et al.  Comparing clusterings: an axiomatic view , 2005, ICML.

[38]  Michel Couprie,et al.  Some links between extremum spanning forests, watersheds and min-cuts , 2010, Image Vis. Comput..

[39]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[40]  Laurent Najman,et al.  Geodesic Saliency of Watershed Contours and Hierarchical Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Jing Wang,et al.  Scalable k-NN graph construction for visual descriptors , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[43]  Olga Veksler,et al.  Image segmentation by nested cuts , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[44]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[45]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Jianbo Shi,et al.  A Random Walks View of Spectral Segmentation , 2001, AISTATS.

[47]  Chung-Kuan Cheng,et al.  Ratio cut partitioning for hierarchical designs , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[48]  Sudeep Sarkar,et al.  Investigation of measures for grouping by graph partitioning , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[49]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Camille Couprie,et al.  Power Watershed: A Unifying Graph-Based Optimization Framework , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Chris H. Q. Ding,et al.  A min-max cut algorithm for graph partitioning and data clustering , 2001, Proceedings 2001 IEEE International Conference on Data Mining.