Effective-range description of a Bose gas under strong one- or two-dimensional confinement
暂无分享,去创建一个
William F. Mitchell | Paul S. Julienne | Eite Tiesinga | W. Mitchell | P. Julienne | E. Tiesinga | Pascal Naidon | P. Naidon
[1] S. Rolston,et al. Collisional deexcitation in a quasi-two-dimensional degenerate bosonic gas , 2005, cond-mat/0509079.
[2] A. Aspect,et al. Momentum spectroscopy of 1D phase fluctuations in Bose-Einstein condensates. , 2003, Physical review letters.
[3] D. Blume,et al. Fermi pseudopotential approximation: Two particles under external confinement , 2002 .
[4] B. Englert,et al. Two Cold Atoms in a Harmonic Trap , 1998 .
[5] William F. Mitchell,et al. Adaptive grid refinement for a model of two confined and interacting atoms , 2005 .
[6] Holzmann,et al. Bose-einstein condensation in quasi-2D trapped gases , 2000, Physical review letters.
[7] Maxim Olshanii. Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons , 1998 .
[8] P. Julienne. Cold Binary Atomic Collisions in a Light Field , 1996, Journal of research of the National Institute of Standards and Technology.
[9] H. Bethe. Theory of the effective range in nuclear scattering , 1949 .
[10] V. Flambaum,et al. Analytical calculation of cold-atom scattering , 1999 .
[11] Toshiya Kinoshita,et al. Observation of a One-Dimensional Tonks-Girardeau Gas , 2004, Science.
[12] B. Gao. Quantum-defect theory of atomic collisions and molecular vibration spectra , 1998 .
[13] Energy-dependent scattering and the Gross-Pitaevskii equation in two-dimensional Bose-Einstein condensates , 2002, cond-mat/0211432.
[14] F. Masnou-Seeuws. Model potential calculations for the KHe and KNe molecular systems: comparison with the predictions of the asymptotic methods , 1982 .
[15] Generalized pseudopotentials for higher partial wave scattering. , 2004, Physical review letters.
[16] Petrov,et al. Regimes of quantum degeneracy in trapped 1D gases , 2000, Physical review letters.
[17] Tuning the interactions of spin-polarized fermions using quasi-one-dimensional confinement. , 2003, Physical review letters.
[18] J. Devreese,et al. Feshbach resonances in a quasi-two-dimensional atomic gas , 2003, cond-mat/0305235.
[19] G. Shlyapnikov,et al. Interatomic collisions in a tightly confined Bose gas , 2000, cond-mat/0012091.
[20] J. Schmiedmayer,et al. Quantum scattering in quasi-one-dimensional cylindrical confinement (15 pages) , 2005 .
[21] T. Gustavson,et al. Realization of Bose-Einstein condensates in lower dimensions. , 2001, Physical review letters.
[22] A Bose-Einstein condensate in an optical lattice , 2002, cond-mat/0206063.
[23] Atom-Atom Scattering under Cylindrical Harmonic Confinement: Numerical and Analytic Studies of the Confinement Induced Resonance. , 2002, Physical review letters.
[24] Jun Ye,et al. Systematic study of the 87Srclock transition in an optical lattice. , 2005, Physical review letters.
[25] E. Fermi. Sopra lo Spostamento per Pressione delle Righe Elevate delle Serie Spettrali , 1934 .
[26] Immanuel Bloch,et al. Tonks–Girardeau gas of ultracold atoms in an optical lattice , 2004, Nature.
[27] P. Julienne,et al. Effective-Scattering-Length Model of Ultracold Atomic Collisions and Feshbach Resonances in Tight Harmonic Traps , 2002, physics/0201021.
[28] Carl J. Williams,et al. Interacting atoms under strong quantum confinement , 2000 .
[29] Scattering in tight atom waveguides , 2004, cond-mat/0402149.
[30] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .