Effective-range description of a Bose gas under strong one- or two-dimensional confinement

We point out that theories describing s-wave collisions of bosonic atoms confined in one-dimensional (1D) or two-dimensional (2D) geometries can be extended to much tighter confinements than previously thought. This is achieved by replacing the scattering length by an energy-dependent scattering length which was already introduced for the calculation of energy levels under 3D confinement. This replacement accurately predicts the position of confinement-induced resonances in strongly confined geometries.

[1]  S. Rolston,et al.  Collisional deexcitation in a quasi-two-dimensional degenerate bosonic gas , 2005, cond-mat/0509079.

[2]  A. Aspect,et al.  Momentum spectroscopy of 1D phase fluctuations in Bose-Einstein condensates. , 2003, Physical review letters.

[3]  D. Blume,et al.  Fermi pseudopotential approximation: Two particles under external confinement , 2002 .

[4]  B. Englert,et al.  Two Cold Atoms in a Harmonic Trap , 1998 .

[5]  William F. Mitchell,et al.  Adaptive grid refinement for a model of two confined and interacting atoms , 2005 .

[6]  Holzmann,et al.  Bose-einstein condensation in quasi-2D trapped gases , 2000, Physical review letters.

[7]  Maxim Olshanii Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons , 1998 .

[8]  P. Julienne Cold Binary Atomic Collisions in a Light Field , 1996, Journal of research of the National Institute of Standards and Technology.

[9]  H. Bethe Theory of the effective range in nuclear scattering , 1949 .

[10]  V. Flambaum,et al.  Analytical calculation of cold-atom scattering , 1999 .

[11]  Toshiya Kinoshita,et al.  Observation of a One-Dimensional Tonks-Girardeau Gas , 2004, Science.

[12]  B. Gao Quantum-defect theory of atomic collisions and molecular vibration spectra , 1998 .

[13]  Energy-dependent scattering and the Gross-Pitaevskii equation in two-dimensional Bose-Einstein condensates , 2002, cond-mat/0211432.

[14]  F. Masnou-Seeuws Model potential calculations for the KHe and KNe molecular systems: comparison with the predictions of the asymptotic methods , 1982 .

[15]  Generalized pseudopotentials for higher partial wave scattering. , 2004, Physical review letters.

[16]  Petrov,et al.  Regimes of quantum degeneracy in trapped 1D gases , 2000, Physical review letters.

[17]  Tuning the interactions of spin-polarized fermions using quasi-one-dimensional confinement. , 2003, Physical review letters.

[18]  J. Devreese,et al.  Feshbach resonances in a quasi-two-dimensional atomic gas , 2003, cond-mat/0305235.

[19]  G. Shlyapnikov,et al.  Interatomic collisions in a tightly confined Bose gas , 2000, cond-mat/0012091.

[20]  J. Schmiedmayer,et al.  Quantum scattering in quasi-one-dimensional cylindrical confinement (15 pages) , 2005 .

[21]  T. Gustavson,et al.  Realization of Bose-Einstein condensates in lower dimensions. , 2001, Physical review letters.

[22]  A Bose-Einstein condensate in an optical lattice , 2002, cond-mat/0206063.

[23]  Atom-Atom Scattering under Cylindrical Harmonic Confinement: Numerical and Analytic Studies of the Confinement Induced Resonance. , 2002, Physical review letters.

[24]  Jun Ye,et al.  Systematic study of the 87Srclock transition in an optical lattice. , 2005, Physical review letters.

[25]  E. Fermi Sopra lo Spostamento per Pressione delle Righe Elevate delle Serie Spettrali , 1934 .

[26]  Immanuel Bloch,et al.  Tonks–Girardeau gas of ultracold atoms in an optical lattice , 2004, Nature.

[27]  P. Julienne,et al.  Effective-Scattering-Length Model of Ultracold Atomic Collisions and Feshbach Resonances in Tight Harmonic Traps , 2002, physics/0201021.

[28]  Carl J. Williams,et al.  Interacting atoms under strong quantum confinement , 2000 .

[29]  Scattering in tight atom waveguides , 2004, cond-mat/0402149.

[30]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .