Multidimensional scaling and visualization of patterns in prime numbers

[1]  J. Stillwell Mathematics and Its History , 2020, Undergraduate Texts in Mathematics.

[2]  Emanuel Guariglia,et al.  Primality, Fractality, and Image Analysis , 2019, Entropy.

[3]  Nasir Saeed,et al.  A Survey on Multidimensional Scaling , 2018, ACM Comput. Surv..

[4]  M. Visser Variants on Andrica’s Conjecture with and without the Riemann Hypothesis , 2018, Mathematics.

[5]  S. Torquato,et al.  Uncovering multiscale order in the prime numbers via scattering , 2018, Journal of Statistical Mechanics: Theory and Experiment.

[6]  S. Torquato,et al.  The structure factor of primes , 2018, 1801.01541.

[7]  Levente Kovács,et al.  Fractional Order PID-type Feedback in Fixed Point Transformation-based Adaptive Control of the FitzHugh-Nagumo Neuron Model with Time-delay , 2018 .

[8]  Jared D. Lichtman,et al.  Explicit estimates for the distribution of numbers free of large prime factors , 2017, 1705.02442.

[9]  José António Tenreiro Machado,et al.  Fractional Jensen-Shannon Analysis of the Scientific Output of Researchers in Fractional Calculus , 2017, Entropy.

[10]  C. Cattani,et al.  On the fractal distribution of primes and prime-indexed primes by the binary image analysis , 2016 .

[11]  Vijay Kumar,et al.  A novel prime numbers based hashing technique for minimizing collisions , 2016, 2016 2nd International Conference on Next Generation Computing Technologies (NGCT).

[12]  J. T. Tenreiro Machado,et al.  Relative fractional dynamics of stock markets , 2016 .

[13]  J. T. Tenreiro Machado,et al.  Integer and fractional-order entropy analysis of earthquake data series , 2016 .

[14]  Hongguang Sun,et al.  Fractional derivative anomalous diffusion equation modeling prime number distribution , 2015 .

[15]  António M. Lopes,et al.  Analysis of Natural and Artificial Phenomena Using Signal Processing and Fractional Calculus , 2015 .

[16]  José António Tenreiro Machado,et al.  Multidimensional Scaling Visualization Using Parametric Similarity Indices , 2015, Entropy.

[17]  Elena Deza,et al.  Encyclopedia of Distances , 2014 .

[18]  Yitang Zhang Bounded gaps between primes , 2014 .

[19]  H. Srivastava,et al.  Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives , 2013 .

[20]  V. E. Tarasov Review of Some Promising Fractional Physical Models , 2013, 1502.07681.

[21]  Xiao‐Jun Yang,et al.  Fractal heat conduction problem solved by local fractional variation iteration method , 2013 .

[22]  J. A. Tenreiro Machado,et al.  A review of power laws in real life phenomena , 2012 .

[23]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[24]  J. H. Jaroma Equivalence of Pepin's and the Lucas-Lehmer tests , 2009 .

[25]  C. Simon,et al.  SELECTION FOR PRIME-NUMBER INTERVALS IN A NUMERICAL MODEL OF PERIODICAL CICADA EVOLUTION , 2009, Evolution; international journal of organic evolution.

[26]  J. Gray Plato's Ghost: The Modernist Transformation of Mathematics , 2008 .

[27]  D. Hutchinson,et al.  Quantum mechanical potentials related to the prime numbers and Riemann zeros. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Lucas Lacasa,et al.  Number theoretic example of scale-free topology inducing self-organized criticality. , 2008, Physical review letters.

[29]  Tadej Kotnik,et al.  The prime-counting function and its analytic approximations , 2008, Adv. Comput. Math..

[30]  H. K. Hahn,et al.  The ordered distribution of natural numbers on the square root spiral , 2007, 0712.2184.

[31]  B. Luque,et al.  Phase transition in a stochastic prime-number generator. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[33]  D. Galvão,et al.  Emergence of prime numbers as the result of evolutionary strategy. , 2004, Physical review letters.

[34]  J. Steuding,et al.  Recent Breakthrough in Primality Testing , 2004 .

[35]  T. Tao,et al.  The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.

[36]  G. Ziegler The Great Prime Number Record Races , 2004 .

[37]  Joe Hurd,et al.  Verification of the Miller-Rabin probabilistic primality test , 2003, J. Log. Algebraic Methods Program..

[38]  Graham J. O. Jameson,et al.  The Prime Number Theorem , 2003 .

[39]  R. Mollin A Brief History of Factoring and Primality Testing B. C. (Before Computers) , 2002 .

[40]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[41]  J. Tattersall Elementary Number Theory in Nine Chapters , 1999 .

[42]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[43]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[44]  Julian L. Hook Rhythm in the Music of Messiaen: an Algebraic Study and an Application in the Turangalîla Symphony , 1998 .

[45]  Yaneer Bar-Yam,et al.  Dynamics Of Complex Systems , 2019 .

[46]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[47]  R. Guy,et al.  The Book of Numbers , 2019, The Crimean Karaim Bible.

[48]  C. R. Fletcher,et al.  Fermat's theorem , 1989 .

[49]  Carl Pomerance,et al.  The Search for Prime Numbers. , 1982 .

[50]  Louis Monier,et al.  Evaluation and Comparison of Two Efficient Probabilistic Primality Testing Algorithms , 1980, Theor. Comput. Sci..

[51]  M. Hendy,et al.  Euclid and the fundamental theorem of arithmetic , 1975 .

[52]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[53]  M. L. Stein,et al.  A VISUAL DISPLAY OF SOME PROPERTIES OF THE DISTRIBUTION OF PRIMES , 1964 .

[54]  P. Erdös,et al.  On a New Method in Elementary Number Theory Which Leads to An Elementary Proof of the Prime Number Theorem. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Atle Selberg,et al.  An Elementary Proof of Dirichlet's Theorem About Primes in an Arithmetic Progression , 1949 .

[56]  Oystein Ore,et al.  Number Theory and Its History , 1949 .

[57]  Harald Cramér,et al.  On the order of magnitude of the difference between consecutive prime numbers , 1936 .

[58]  J. Littlewood,et al.  Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes , 1923 .

[59]  J. Hadamard Sur la distribution des zéros de la fonction $\zeta (s)$ et ses conséquences arithmétiques , 1896 .