Geographic range and habitat reconstructions shed light on palaeotropical intercontinental disjunction and regional diversification patterns in Artabotrys (Annonaceae)

The biogeographical and habitat history of the species‐rich angiosperm genus Artabotrys is reconstructed to assess hypotheses relating to processes that underlie palaeotropical intercontinental disjunction (PID) and regional diversification patterns.

[1]  G. Shi,et al.  The early history of Annonaceae (Magnoliales) in Southeast Asia suggests floristic exchange between India and Pan‐Indochina by the late Oligocene , 2019, Papers in Palaeontology.

[2]  Andrew J. Helmstetter,et al.  Phylogenomics of the Major Tropical Plant Family Annonaceae Using Targeted Enrichment of Nuclear Genes , 2018, bioRxiv.

[3]  G. Kadereit,et al.  Multiple shifts to open habitats in Melastomateae (Melastomataceae) congruent with the increase of African Neogene climatic aridity , 2018 .

[4]  L. Lohmann,et al.  Importance of dispersal in the assembly of the Neotropical biota , 2018, Proceedings of the National Academy of Sciences.

[5]  Daniele Silvestro,et al.  Amazonia is the primary source of Neotropical biodiversity , 2018, Proceedings of the National Academy of Sciences.

[6]  J. Ornelas,et al.  A jungle tale: Molecular phylogeny and divergence time estimates of the Desmopsis-Stenanona clade (Annonaceae) in Mesoamerica. , 2018, Molecular phylogenetics and evolution.

[7]  David M. Johnson,et al.  A revision of Xylopia L. (Annonaceae): the species of Tropical Africa , 2018, PhytoKeys.

[8]  Richard H. Ree,et al.  Conceptual and statistical problems with the DEC+J model of founder‐event speciation and its comparison with DEC via model selection , 2018 .

[9]  J. Doucet,et al.  Evolution in the Amphi-Atlantic tropical genus Guibourtia (Fabaceae, Detarioideae), combining NGS phylogeny and morphology. , 2018, Molecular phylogenetics and evolution.

[10]  P. Maas,et al.  Parallel diversifications of Cremastosperma and Mosannona (Annonaceae), tropical rainforest trees tracking Neogene upheaval of South America , 2018, Royal Society Open Science.

[11]  Stephen E. Fick,et al.  WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .

[12]  R. Saunders,et al.  Historical biogeography and ecological niche modelling of the Asimina-Disepalum clade (Annonaceae): role of ecological differentiation in Neotropical-Asian disjunctions and diversification in Asia , 2017, BMC Evolutionary Biology.

[13]  A. Lemmon,et al.  The phylogeny and biogeography of Hakea (Proteaceae) reveals the role of biome shifts in a continental plant radiation , 2017, Evolution; international journal of organic evolution.

[14]  Gregory W. Stull,et al.  Plastid and Seed Morphology Data Support a Revised Infrageneric Classification and an African Origin of the Pantropical Genus Xylopia (Annonaceae) , 2017, Systematic Botany.

[15]  Robert Lanfear,et al.  PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. , 2016, Molecular biology and evolution.

[16]  J. Franklin,et al.  Plant diversity patterns in neotropical dry forests and their conservation implications , 2016, Science.

[17]  Charles S. P. Foster,et al.  Evaluating the Impact of Genomic Data and Priors on Bayesian Estimates of the Angiosperm Evolutionary Timescale , 2016, Systematic biology.

[18]  Xia Hua,et al.  Estimating the Effective Sample Size of Tree Topologies from Bayesian Phylogenetic Analyses , 2016, Genome biology and evolution.

[19]  R. Bouckaert,et al.  bModelTest: Bayesian phylogenetic site model averaging and model comparison , 2015, BMC Evolutionary Biology.

[20]  Y. Yu,et al.  RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. , 2015, Molecular phylogenetics and evolution.

[21]  Gregory W. Stull,et al.  The historical origins of palaeotropical intercontinental disjunctions in the pantropical flowering plant family Annonaceae , 2015 .

[22]  M. Harrington,et al.  The Sahul–Sunda floristic exchange: dated molecular phylogenies document Cenozoic intercontinental dispersal dynamics , 2015 .

[23]  M. Donoghue,et al.  Biome Shifts and Niche Evolution in Plants , 2014 .

[24]  N. Matzke,et al.  Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades. , 2014, Systematic biology.

[25]  Dong Xie,et al.  BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..

[26]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[27]  G. Ramstein,et al.  The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma) , 2013 .

[28]  Michael J. Landis,et al.  Bayesian analysis of biogeography when the number of areas is large. , 2013, Systematic biology.

[29]  M. Donoghue,et al.  Is it easy to move and easy to evolve? Evolutionary accessibility and adaptation. , 2013, Journal of experimental botany.

[30]  J. Parnell The biogeography of the Isthmus of Kra region: a review , 2013 .

[31]  J. Doyle,et al.  Dating clades with fossils and molecules: the case of Annonaceae , 2012 .

[32]  M. Chase,et al.  A new subfamilial and tribal classification of the pantropical flowering plant family Annonaceae informed by molecular phylogenetics , 2012 .

[33]  W. Spakman,et al.  Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia , 2012, Proceedings of the National Academy of Sciences.

[34]  A. Haywood,et al.  Global vegetation dynamics and latitudinal temperature gradients during the mid to Late Miocene (15.97-5.33 Ma) , 2012 .

[35]  M. Vences,et al.  Spatial and temporal arrival patterns of Madagascar's vertebrate fauna explained by distance, ocean currents, and ancestor type , 2012, Proceedings of the National Academy of Sciences.

[36]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[37]  R. Saunders,et al.  ‘Out‐of‐Africa’ dispersal of tropical floras during the Miocene climatic optimum: evidence from Uvaria (Annonaceae) , 2012 .

[38]  Alice C Hughes,et al.  Explaining the causes of the zoogeographic transition around the Isthmus of Kra: using bats as a case study , 2011 .

[39]  J. Wieringa,et al.  Little ecological divergence associated with speciation in two African rain forest tree genera , 2011, BMC Evolutionary Biology.

[40]  R. Erkens,et al.  Early evolutionary history of the flowering plant family Annonaceae: steady diversification and boreotropical geodispersal , 2011 .

[41]  F. Putz,et al.  Annual Rainfall and Seasonality Predict Pan‐tropical Patterns of Liana Density and Basal Area , 2010 .

[42]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[43]  E. M. Friis,et al.  Diversity in obscurity: fossil flowers and the early history of angiosperms , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[44]  M. Huber,et al.  Mammalian biodiversity on Madagascar controlled by ocean currents , 2010, Nature.

[45]  R. Hall Southeast Asia’s changing palaeogeography , 2009 .

[46]  L. Turner,et al.  The Indochinese–Sundaic zoogeographic transition: a description and analysis of terrestrial mammal species distributions , 2009 .

[47]  Maria A. Gandolfo,et al.  Phylogenetic biome conservatism on a global scale , 2009, Nature.

[48]  K. Uesugi,et al.  Floral Evidence of Annonaceae from the Late Cretaceous of Japan , 2008, International Journal of Plant Sciences.

[49]  J. Ali,et al.  Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166-35 Ma) , 2008 .

[50]  S. Davies,et al.  The role of desiccation tolerance in determining tree species distributions along the Malay–Thai Peninsula , 2008 .

[51]  Richard H. Ree,et al.  Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. , 2008, Systematic biology.

[52]  J. Doyle,et al.  Phylogeny and Geographic History of Annonaceae , 2007 .

[53]  G. Ramstein,et al.  Tectonic Uplift and Eastern Africa Aridification , 2006, Science.

[54]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[55]  K. Miller,et al.  The Phanerozoic Record of Global Sea-Level Change , 2005, Science.

[56]  S. Schnitzer A Mechanistic Explanation for Global Patterns of Liana Abundance and Distribution , 2005, The American Naturalist.

[57]  B. Mohr,et al.  Endressinia brasiliana, a Magnolialean Angiosperm from the Lower Cretaceous Crato Formation (Brazil) , 2004, International Journal of Plant Sciences.

[58]  B. Jacobs Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[59]  C. Dick,et al.  Missing fossils, molecular clocks, and the origin of the Melastomataceae. , 2003, American journal of botany.

[60]  D. Woodruff Neogene marine transgressions, palaeogeography and biogeographic transitions on the Thai–Malay Peninsula , 2003 .

[61]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[62]  H. Voris Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations , 2000 .

[63]  Fredrik Ronquist,et al.  Dispersal-Vicariance Analysis: A New Approach to the Quantification of Historical Biogeography , 1997 .

[64]  P. Ashton,et al.  New light on the plant geography of Ceylon I. Historical plant geography , 1987 .

[65]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[66]  I. Turner,et al.  Annonaceae , 2014, Tree Flora of Sabah and Sarawak.

[67]  G. Ramstein,et al.  The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition ( ca . 14 Ma ) , 2013 .

[68]  J. Montero,et al.  Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera (Burseraceae, Sapindales). , 2012, The New phytologist.

[69]  D. Marshall,et al.  Cryptic failure of partitioned Bayesian phylogenetic analyses: lost in the land of long trees. , 2010, Systematic biology.

[70]  R. Morley Interplate dispersal paths for megathermal angiosperms , 2003 .

[71]  K. Karanth Evolution of disjunct distributions among wet-zone species of the Indian subcontinent: Testing various hypotheses using a phylogenetic approach , 2003 .

[72]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[73]  V. Fred Palaeogeographic Considerations for Mediterranean and Paratethys Seaways (Oligocene to Miocene) , 1998 .

[74]  J. A. Wolfe Some Aspects of Plant Geography of the Northern Hemisphere During the Late Cretaceous and Tertiary , 1975 .

[75]  Peter H. Raven,et al.  Angiosperm Biogeography and Past Continental Movements , 1974 .