Super-tasks, accelerating Turing machines and uncomputability

Accelerating Turing machines are devices with the same computational structure as Turing machines (TM), but able to perform super-tasks. We ask whether performing super-tasks alone produces more computational power; for example, whether accelerating TM can solve the halting problem. We conclude that this is not the case. No accelerating TM solves the halting problem. The argument rests on an analysis of the reasoning that leads to Thomson's paradox. The key point is that the paradox rests on a conflation of different perspectives of accelerating processes. This leads to concluding that the same conflation underlies the claim that accelerating TM can solve the halting problem.

[1]  George Boolos,et al.  Computability and logic , 1974 .

[2]  Hilary Putnam,et al.  Philosophy of mathematics : selected readings , 1984 .

[3]  Bertrand Russell VII.—The Limits of Empiricism , 1936 .

[4]  George Boolos,et al.  Computability and logic: 3rd ed. , 1989 .

[5]  Ian Stewart,et al.  Deciding the undecidable , 1991, Nature.

[6]  A. Church Review: A. M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem , 1937 .

[7]  H. Weyl Philosophie der Mathematik und Naturwissenschaft , 1927 .

[8]  Wesley C. Salmon,et al.  Zeno's Paradoxes, , 1970 .

[9]  Oron Shagrir,et al.  Physical Hypercomputation and the Church–Turing Thesis , 2003, Minds and Machines.

[10]  B. Jack Copeland Super turing-machines , 1998 .

[11]  Paul Benacerraf,et al.  Tasks, Super-Tasks, and the Modern Eleatics , 1962 .

[12]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[13]  John D. Norton,et al.  Infinite pains: the trouble with supertasks , 1996 .

[14]  J. Earman,et al.  Forever Is a Day: Supertasks in Pitowsky and Malament-Hogarth Spacetimes , 1993, Philosophy of Science.

[15]  B. Jack Copeland,et al.  EVEN TURING MACHINES CAN COMPUTE UNCOMPUTABLE FUNCTIONS , 1998 .

[16]  M. Hogarth Does general relativity allow an observer to view an eternity in a finite time? , 1992 .

[17]  Martha Haskell Clark Tasks , 1924 .

[18]  Bertrand Russell,et al.  The Limits of Empiricism. , 1937 .

[19]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[20]  B. Jack Copeland,et al.  Accelerating Turing Machines , 2002, Minds and Machines.

[21]  R. M. Blake The Paradox of Temporal Process , 1926 .

[22]  Alan M. Turing,et al.  Systems of Logic Based on Ordinals , 2012, Alan Turing's Systems of Logic.

[23]  B. Copeland,et al.  Beyond the universal Turing machine , 1999 .

[24]  M. Hogarth Non-Turing Computers and Non-Turing Computability , 1994, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[25]  Mark Burgin,et al.  How we know what technology can do , 2001, CACM.

[26]  J. F. Thomson,et al.  Tasks and Super-Tasks , 1954 .

[27]  Robin Gandy,et al.  Church's Thesis and Principles for Mechanisms , 1980 .

[28]  Hilary Putnam,et al.  The Philosophy of Mathematics: , 2019, The Mathematical Imagination.

[29]  Adam Morton,et al.  Benacerraf and His Critics , 1996 .

[30]  John L. Casti,et al.  Unconventional Models of Computation , 2002, Lecture Notes in Computer Science.

[31]  Joel David Hamkins,et al.  Infinite Time Turing Machines , 2000 .

[32]  H. Keisler,et al.  The Kleene Symposium , 1980 .