Extremely scaled silicon nano-CMOS devices

Silicon-based CMOS technology can be scaled well into the nanometer regime. High-performance, planar, ultrathin-body devices fabricated on silicon-on-insulator substrates have been demonstrated down to 15-nm gate lengths. We have also introduced the FinFET, a double-gate device structure that is relatively simple to fabricate and can be scaled to gate lengths below 10 nm. In this paper, some of the key elements of these technologies are described, including sublithographic patterning, the effects of crystal orientation and roughness on carrier mobility, gate work function engineering, circuit performance, and sensitivity to process-induced variations.

[1]  B. Tsui,et al.  Wide range work function modulation of binary alloys for MOSFET application , 2003, IEEE Electron Device Letters.

[2]  J. Bokor,et al.  FinFET process refinements for improved mobility and gate work function engineering , 2002, Digest. International Electron Devices Meeting,.

[3]  A. Kumar,et al.  QDAME simulation of 7.5 nm double-gate Si nFETs with differing access geometries , 2002, Digest. International Electron Devices Meeting,.

[4]  Tsu-Jae King,et al.  Tunable work function molybdenum gate technology for FDSOI-CMOS , 2002, Digest. International Electron Devices Meeting,.

[5]  H.-S.P. Wong,et al.  Extreme scaling with ultra-thin Si channel MOSFETs , 2002, Digest. International Electron Devices Meeting,.

[6]  Bin Yu,et al.  FinFET scaling to 10 nm gate length , 2002, Digest. International Electron Devices Meeting,.

[7]  Chenming Hu,et al.  Spacer FinFET: nanoscale double-gate CMOS technology for the terabit era , 2002 .

[8]  F. Roozeboom,et al.  A Tuneable Metal Gate Work Function Using Solid State Diffusion of Nitrogen , 2002, European Solid-State Device Research Conference.

[9]  Pushkar Ranade,et al.  Ultra Thin Body Silicon-On-Insulator (UTB SOI) MOSFET with Metal Gate Work-function Engineering for sub-70 nm Technology Node , 2002 .

[10]  Jason C. S. Woo,et al.  Advanced model and analysis of series resistance for CMOS scaling into nanometer regime. II. Quantitative analysis , 2002 .

[11]  D. M. Kim,et al.  Photonic high-frequency capacitance-voltage characterization of interface states in metal-oxide-semiconductor capacitors , 2002 .

[12]  K. Meyer,et al.  The spacer/replacer concept: a viable route for sub-100 nm ultrathin-film fully-depleted SOI CMOS , 2002 .

[13]  C. Hu,et al.  A spacer patterning technology for nanoscale CMOS , 2002 .

[14]  V. Misra,et al.  Electrical properties of Ru-based alloy gate electrodes for dual metal gate Si-CMOS , 2002, IEEE Electron Device Letters.

[15]  Chenming Hu,et al.  Dual work function metal gate CMOS transistors by Ni-Ti interdiffusion , 2002, IEEE Electron Device Letters.

[16]  Chenming Hu,et al.  An adjustable work function technology using Mo gate for CMOS devices , 2002, IEEE Electron Device Letters.

[17]  Chenming Hu,et al.  Effects of high-/spl kappa/ gate dielectric materials on metal and silicon gate workfunctions , 2002, IEEE Electron Device Letters.

[18]  D.A. Antoniadis,et al.  MOSFET scalability limits and "new frontier" devices , 2002, 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303).

[19]  Yang-Kyu Choi,et al.  35 nm CMOS FinFETs , 2002, 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303).

[20]  P. Abramowitz,et al.  Metal gate MOSFETs with HfO/sub 2/ gate dielectric , 2002, 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303).

[21]  H.-S. Philip Wong,et al.  Beyond the conventional transistor , 2002, IBM J. Res. Dev..

[22]  T. King,et al.  Reduction of Gate-Induced Drain Leakage (GIDL) Current in Single-Gate Ultra-Thin Body and Double-Gate FinFET Devices , 2002 .

[23]  R. Chau,et al.  Advanced depleted-substrate transistors: Single-gate, double-gate, and Tri-gate , 2002 .

[24]  K. Shibahara,et al.  Degradation in a Molybdenum-Gate MOS Structure Caused by N + Ion Implantation for Work Function Control , 2002 .

[25]  H. van Meer,et al.  The spacer/replacer concept: a viable route for sub-100 nm ultrathin-film fully-depleted SOI CMOS , 2002, IEEE Electron Device Letters.

[26]  Jason C. S. Woo,et al.  Advanced Model and Analysis of Series Resistance for CMOS Scaling Into Nanometer Regime—Part I: , 2002 .

[27]  T. Oda Transistor elements for 30nm physical gate lengths and beyond , 2002 .

[28]  Chenming Hu,et al.  Sub-20 nm CMOS FinFET technologies , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[29]  E. Nowak,et al.  High-performance symmetric-gate and CMOS-compatible V/sub t/ asymmetric-gate FinFET devices , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[30]  Qi Xiang,et al.  15 nm gate length planar CMOS transistor , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[31]  J. Kavalieros,et al.  A 50 nm depleted-substrate CMOS transistor (DST) , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[32]  Tohru Mogami,et al.  A dual-metal gate CMOS technology using nitrogen-concentration-controlled TiNx film , 2001 .

[33]  Chenming Hu,et al.  Sub-60-nm quasi-planar FinFETs fabricated using a simplified process , 2001, IEEE Electron Device Letters.

[34]  Chenming Hu,et al.  Nanoscale ultrathin body PMOSFETs with raised selective germanium source/drain , 2001 .

[35]  Chenming Hu,et al.  Patterning sub-30-nm MOSFET gate with i-line lithography , 2001 .

[36]  Chenming Hu,et al.  Dual-metal gate CMOS technology with ultrathin silicon nitride gate dielectric , 2001, IEEE Electron Device Letters.

[37]  C. Hu,et al.  Sub-50 nm P-channel FinFET , 2001 .

[38]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[39]  Jeffrey Bokor,et al.  Gate length scaling and threshold voltage control of double-gate MOSFETs , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[40]  Gerold W. Neudeck,et al.  New planar self-aligned double-gate fully-depleted P-MOSFETs using epitaxial lateral overgrowth (ELO) and selectively grown source/drain (S/D) , 2000, 2000 IEEE International SOI Conference. Proceedings (Cat. No.00CH37125).

[41]  M. Lundstrom,et al.  Electron transport in a model Si transistor , 2000 .

[42]  Tahir Ghani,et al.  Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors , 2000, 2000 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.00CH37104).

[43]  T. Nigam,et al.  50 nm Vertical Replacement-Gate (VRG) pMOSFETs , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[44]  D. Terpstra,et al.  Selective versus non-selective growth of Si and SiGe , 1999 .

[45]  Jong-Ho Lee,et al.  Super self-aligned double-gate (SSDG) MOSFETs utilizing oxidation rate difference and selective epitaxy , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[46]  T. Hiramoto,et al.  Threshold voltage increase by quantum mechanical narrow channel effect in ultra-narrow MOSFETs , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[47]  Chenming Hu,et al.  Ultra-thin body SOI MOSFET for deep-sub-tenth micron era , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[48]  David J. Frank,et al.  Nanoscale CMOS , 1999, Proc. IEEE.

[49]  S. Horiguchi,et al.  ELECTRONIC STRUCTURES AND PHONON-LIMITED ELECTRON MOBILITY OF DOUBLE-GATE SILICON-ON-INSULATOR SI INVERSION LAYERS , 1999 .

[50]  D. Frank,et al.  25 nm CMOS design considerations , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[51]  Liu Litian,et al.  Optimization of MOSFETs with polysilicon-elevated source/drain , 1998, 1998 5th International Conference on Solid-State and Integrated Circuit Technology. Proceedings (Cat. No.98EX105).

[52]  Liu Litian,et al.  Optimization of MOSFET's with Polysilicon-Elevated SourcelDrain , 1998 .

[53]  Karl Goser,et al.  Matching analysis of deposition defined 50-nm MOSFET's , 1998 .

[54]  H.-S.P. Wong,et al.  Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[55]  C. Hu,et al.  A comparative study of advanced MOSFET concepts , 1996 .

[56]  J. Welser,et al.  Strain dependence of the performance enhancement in strained-Si n-MOSFETs , 1994, Proceedings of 1994 IEEE International Electron Devices Meeting.

[57]  S. Takagi,et al.  On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration , 1994 .

[58]  S. Horiguchi,et al.  Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs , 1993, IEEE Electron Device Letters.

[59]  M. C. Öztürk,et al.  Phase transitions during solid-state formation of cobalt germanide by rapid thermal annealing , 1993 .

[60]  J. Wortman,et al.  Formation of titanium and cobalt germanides on Si (100) using rapid thermal processing , 1992 .

[61]  M. V. Fischetti,et al.  Monte Carlo simulation of a 30 nm dual-gate MOSFET: how short can Si go? , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[62]  D. Hisamoto,et al.  Impact of the vertical SOI 'DELTA' structure on planar device technology , 1991 .

[63]  J. Colinge,et al.  Silicon-on-insulator 'gate-all-around device' , 1990, International Technical Digest on Electron Devices.

[64]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[65]  Hisashi Hara,et al.  Mobility Anisotropy of Electrons in Inversion Layers on Oxidized Silicon Surfaces , 1971 .

[66]  R. Smoluchowski Anisotropy of the Electronic Work Function of Metals , 1941 .