The UV-Optical Galaxy Color-Magnitude Diagram. I. Basic Properties

We have analyzed the bivariate distribution of galaxies as a function of ultraviolet-optical colors and absolute magnitudes in the local universe. The sample consists of galaxies with redshifts and optical photometry from the Sloan Digital Sky Survey (SDSS) main galaxy sample matched with detections in the near-ultraviolet (NUV) and far-ultraviolet (FUV) bands in the Medium Imaging Survey being carried out by the Galaxy Evolution Explorer (GALEX) satellite. In the (NUV − r)0.1 versus Mr,0.1 galaxy color-magnitude diagram, the galaxies separate into two well-defined blue and red sequences. The (NUV − r)0.1 color distribution at each Mr,0.1 is not well fit by the sum of two Gaussians due to an excess of galaxies in between the two sequences. The peaks of both sequences become redder with increasing luminosity, with a distinct blue peak visible up to Mr,0.1 ∼ − 23. The r0.1-band luminosity functions vary systematically with color, with the faint-end slope and characteristic luminosity gradually increasing with color. After correcting for attenuation due to dust, we find that approximately one-quarter of the color variation along the blue sequence is due to dust, with the remainder due to star formation history and metallicity. Finally, we present the distribution of galaxies as a function of specific star formation rate and stellar mass. The specific star formation rates imply that galaxies along the blue sequence progress from low-mass galaxies with star formation rates that increase somewhat with time to more massive galaxies with a more or less constant star formation rate. Above a stellar mass of ~1010.5 M☉, galaxies with low ratios of current to past averaged star formation rate begin to dominate.

[1]  A. Szalay,et al.  The Calibration and Data Products of GALEX , 2007 .

[2]  Benjamin D. Johnson,et al.  The UV-Optical Color Magnitude Diagram. II. Physical Properties and Morphological Evolution On and Off of a Star-forming Sequence , 2007, 0711.4823.

[3]  Benjamin D. Johnson,et al.  Extinction-corrected Star Formation Rates Empirically Derived from Ultraviolet-Optical Colors , 2007, 0707.3165.

[4]  David Schiminovich,et al.  Statistical Properties of the GALEX-SDSS Matched Source Catalogs, and Classification of the UV Sources , 2006, astro-ph/0611926.

[5]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[6]  A. Connolly,et al.  The Deep Evolutionary Exploratory Probe 2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2006 .

[7]  D. Schiminovich,et al.  Dissecting Galaxy Colors with GALEX, SDSS, and Spitzer , 2006, astro-ph/0605473.

[8]  S. Driver,et al.  The Millennium Galaxy Catalogue : morphological classification and bimodality in the colour-concentration plane , 2006, astro-ph/0602240.

[9]  A. Dekel,et al.  Modelling the galaxy bimodality: shutdown above a critical halo mass , 2006, astro-ph/0601295.

[10]  Galaxies in SDSS and DEEP2: A Quiet Life on the Blue Sequence? , 2005, astro-ph/0512127.

[11]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[12]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[13]  Liverpool John Moores University,et al.  Bivariate galaxy luminosity functions in the Sloan Digital Sky Survey , 2005, astro-ph/0507547.

[14]  A. Fontana,et al.  Bimodal Color Distribution in Hierarchical Galaxy Formation , 2005, astro-ph/0506387.

[15]  A. Connolly,et al.  The DEEP2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2005, astro-ph/0506041.

[16]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[17]  D. Schiminovich,et al.  Testing the Empirical Relation between Ultraviolet Color and Attenuation of Galaxies , 2005 .

[18]  Dust Attenuation in the Nearby Universe: A Comparison between Galaxies Selected in the Ultraviolet and in the Far-Infrared , 2004, astro-ph/0411343.

[19]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[20]  The Ultraviolet Galaxy Luminosity Function from GALEX Data: Color-Dependent Evolution at Low Redshift , 2004, astro-ph/0411308.

[21]  J. Brinkmann,et al.  The Properties and Luminosity Function of Extremely Low Luminosity Galaxies , 2004, astro-ph/0410164.

[22]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[23]  T. Budavari,et al.  The GALEX-VVDS Measurement of the Evolution of the Far-Ultraviolet Luminosity Density and the Cosmic Star Formation Rate , 2004, astro-ph/0411424.

[24]  A. Szalay,et al.  Systematics of the Ultraviolet Rising Flux in a GALEX/SDSS Sample of Early-Type Galaxies , 2004, astro-ph/0411356.

[25]  A. Szalay,et al.  The On-Orbit Performance of the Galaxy Evolution Explorer , 2004, astro-ph/0411310.

[26]  R. Nichol,et al.  The Bimodal Galaxy Color Distribution: Dependence on Luminosity and Environment , 2004, astro-ph/0406266.

[27]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[28]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[29]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[30]  S. M. Fall,et al.  Star formation history and dust content of galaxies drawn from ultraviolet surveys , 2003, astro-ph/0312474.

[31]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[32]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[33]  D. York,et al.  The Overdensities of Galaxy Environments as a Function of Luminosity and Color , 2002, astro-ph/0212085.

[34]  R. Nichol,et al.  The Broadband Optical Properties of Galaxies with Redshifts 0.02 < z < 0.22 , 2002, astro-ph/0209479.

[35]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[36]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[37]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[38]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[39]  E. Bell Dust-induced Systematic Errors in Ultraviolet-derived Star Formation Rates , 2002, astro-ph/0207397.

[40]  Mamoru Doi,et al.  Estimating Fixed-Frame Galaxy Magnitudes in the Sloan Digital Sky Survey , 2002, astro-ph/0205243.

[41]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[42]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[43]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[44]  et al,et al.  The Luminosity Function of Galaxies from SDSS Commissioning Data , 2000 .

[45]  K. Gordon,et al.  The Flux Ratio Method for Determining the Dust Attenuation of Starburst Galaxies , 1999, astro-ph/9912034.

[46]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[47]  ApJ, in press , 1999 .

[48]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[49]  B. Milliard,et al.  An Ultraviolet selected galaxy redshift survey: New estimates of the local star formation rate , 1998 .

[50]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[51]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[52]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[53]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[54]  R. Kron Photometry of a complete sample of faint galaxies. , 1980 .

[55]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[56]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[57]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .

[58]  M. S. Roberts,et al.  Properties of Galaxies: color-magnitude diagram , 1964 .

[59]  G. Vaucouleurs Integrated Colors of Bright Galaxies in the u, b, V System. , 1961 .