Numerical inverse kinematics for modular reconfigurable robots

.equations based on the product-of-exponential POE formulas. The Newton]Raphson iteration method is employed for solution. The automated model generation is accomplished by using the kinematic graph representation of a modular robot assembly configuration and the related accessibility matrix and path matrix. Examples of the inverse kinematics solutions for different types of modular robots are given to demonstrate the applicability and effectiveness of the proposed algorithm. Q 1999 John Wiley & Sons, Inc.

[1]  Ferdinand Freudenstein,et al.  Some Applications of Graph Theory to the Structural Analysis of Mechanisms , 1967 .

[2]  Narsingh Deo,et al.  Graph Theory with Applications to Engineering and Computer Science , 1975, Networks.

[3]  Joseph James Duffy,et al.  A displacement analysis of the general spatial 7-link, mechanism , 1980 .

[4]  Roger W. Brockett,et al.  Robotic manipulators and the product of exponentials formula , 1984 .

[5]  Jadran Lenarcic,et al.  An efficient numerical approach for calculating the inverse kinematics for robot manipulators , 1985, Robotica.

[6]  D. L. Lawrence,et al.  A Generalized Solution to the Inverse Kinematics of Robotic Manipulators , 1985 .

[7]  Fritz B. Prinz,et al.  An Algorithm for Seam Tracking Applications , 1985 .

[8]  J. Angeles On the Numerical Solution of the Inverse Kinematic Problem , 1985 .

[9]  Keith L. Doty,et al.  A Fast Algorithm for Inverse Kinematic Analysis of Robot Manipulators , 1988, Int. J. Robotics Res..

[10]  Hong Y. Lee,et al.  A new vector theory for the analysis of spatial mechanisms , 1988 .

[11]  Pradeep K. Khosla,et al.  Automatic generation of kinematics for a reconfigurable modular manipulator system , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[12]  Kazem Kazerounian,et al.  Kinematic Calibration of Robotic Manipulators , 1989 .

[13]  Guillermo Rodríguez-Ortiz,et al.  Efficient Control with an Order (n) Recursive Inversion of the Jacobian for an n-Link Serial Manipulator , 1991, 1991 American Control Conference.

[14]  Robert Owen Ambrose Design, construction and demonstration of modular, reconfigurable robots , 1991 .

[15]  Bernard Roth,et al.  Kinematic analysis of the 6R manipulator of general geometry , 1991 .

[16]  A. Morgan,et al.  SOLVING THE 6R INVERSE POSITION PROBLEM USING A GENERIC-CASE SOLUTION METHODOLOGY , 1991 .

[17]  Dinesh Manocha,et al.  Real time inverse kinematics for general 6R manipulators , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[18]  R. Cohen,et al.  Conceptual Design of a Modular Robot , 1992 .

[19]  F. Park Computational aspects of the product-of-exponentials formula for robot kinematics , 1994, IEEE Trans. Autom. Control..

[20]  R. Featherstone Explicit Modelling of General Task Spaces for Inverse Kinematics , 1994 .

[21]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[22]  I. Chen Theory and applications of modular reconfigurable robotic systems , 1994 .

[23]  Hong Y. Lee,et al.  Inverse Kinematics of Serial-Chain Manipulators , 1996 .

[24]  Christiaan J. J. Paredis,et al.  A rapidly deployable manipulator system , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[25]  Guilin Yang,et al.  Configuration independent kinematics for modular robots , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[26]  Christiaan J. J. Paredis,et al.  A rapidly deployable manipulator system , 1997, Robotics Auton. Syst..

[27]  Guilin Yang,et al.  Kinematic Calibration of Modular Reconfigurable Robots Using Product-of- Exponentials Formula , 1997 .