Increasing wildfires threaten historic carbon sink of boreal forest soils

[1]  S. Goetz,et al.  ABoVE: Characterization of Carbon Dynamics in Burned Forest Plots, NWT, Canada, 2014 , 2019 .

[2]  S. Goetz,et al.  Cross‐scale controls on carbon emissions from boreal forest megafires , 2018, Global change biology.

[3]  S. Goetz,et al.  ABoVE: Wildfire Carbon Emissions and Burned Plot Characteristics, NWT, CA, 2014-2016 , 2018 .

[4]  M. Mack,et al.  Soil organic layer combustion in boreal black spruce and jack pine stands of the Northwest Territories, Canada , 2018 .

[5]  R. B. Jackson,et al.  Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity , 2017, Nature.

[6]  J. Randerson,et al.  Global fire emissions estimates during 1997–2016 , 2017 .

[7]  F. Hu,et al.  Climatic thresholds shape northern high‐latitude fire regimes and imply vulnerability to future climate change , 2017 .

[8]  D. Lawrence,et al.  Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems , 2017 .

[9]  E. Kasischke,et al.  More frequent burning increases vulnerability of Alaskan boreal black spruce forests , 2016 .

[10]  E. Schuur,et al.  Radiocarbon and Climate Change: Mechanisms, Applications and Laboratory Techniques , 2016 .

[11]  Jill F. Johnstone,et al.  Differences in Ecosystem Carbon Distribution and Nutrient Cycling Linked to Forest Tree Species Composition in a Mid-Successional Boreal Forest , 2015, Ecosystems.

[12]  J. Logan,et al.  Impact of 2050 climate change on North American wildfire: consequences for ozone air quality , 2015 .

[13]  J. Randerson,et al.  Influence of tree species on continental differences in boreal fires and climate feedbacks , 2015 .

[14]  D. M. Lawrence,et al.  Climate change and the permafrost carbon feedback , 2014, Nature.

[15]  F. Hu,et al.  Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years , 2013, Proceedings of the National Academy of Sciences.

[16]  M. Flannigan,et al.  Climate change impacts on future boreal fire regimes , 2013 .

[17]  A. McGuire,et al.  Is the northern high‐latitude land‐based CO2 sink weakening? , 2011 .

[18]  David L. Verbyla,et al.  Carbon loss from an unprecedented Arctic tundra wildfire , 2011, Nature.

[19]  E. Kasischke,et al.  Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands , 2011 .

[20]  David R. Anderson,et al.  AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons , 2011, Behavioral Ecology and Sociobiology.

[21]  M. Mack,et al.  Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest. , 2010, Ecological applications : a publication of the Ecological Society of America.

[22]  F. Stuart Chapin,et al.  Fire, climate change, and forest resilience in interior Alaska. , 2010 .

[23]  R. Lal,et al.  Carbon Dynamics and Pools in Major Forest Biomes of the World , 2010 .

[24]  A. McGuire,et al.  Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach , 2009 .

[25]  T. Minayeva,et al.  Carbon accumulation in soils of forest and bog ecosystems of southern Valdai in the Holocene , 2008, Biology Bulletin.

[26]  Ronald J. Hall,et al.  Large fires as agents of ecological diversity in the North American boreal forest , 2008 .

[27]  F. Chapin,et al.  A Key for Predicting Postfire Successional Trajectories in Black Spruce Stands of Interior Alaska , 2008 .

[28]  R. Hall,et al.  Estimating direct carbon emissions from Canadian wildland fires 1 , 2007 .

[29]  Scott D. Peckham,et al.  Fire as the dominant driver of central Canadian boreal forest carbon balance , 2007, Nature.

[30]  Yonghe Wang,et al.  Spatial patterns of forest fires in Canada, 1980-1999 , 2006 .

[31]  E. Kasischke,et al.  Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska , 2006 .

[32]  C. Wirth,et al.  Reconciling Carbon-cycle Concepts, Terminology, and Methods , 2006, Ecosystems.

[33]  Rodney X. Sturdivant,et al.  Applied Logistic Regression: Hosmer/Applied Logistic Regression , 2005 .

[34]  M. Schemper,et al.  A solution to the problem of separation in logistic regression , 2002, Statistics in medicine.

[35]  K. Hirsch,et al.  Large forest fires in Canada, 1959–1997 , 2002 .

[36]  K. Hirsch,et al.  Direct carbon emissions from Canadian forest fires, 1959-1999 , 2001 .

[37]  Eric S. Kasischke,et al.  The role of fire in the boreal carbon budget , 2000, Global change biology.

[38]  J. Cihlar,et al.  Hotspot and NDVI Differencing Synergy (HANDS): A New Technique for Burned Area Mapping over Boreal Forest , 2000 .

[39]  I. Levin,et al.  Radiocarbon – A Unique Tracer of Global Carbon Cycle Dynamics , 2000, Radiocarbon.

[40]  I. Levin,et al.  RADIOCARBON - A UNIQUE TRACER OF GLOBAL CARBON CYCLE DYNAMICS , 2000 .

[41]  David R. Anderson,et al.  Model Selection and Multimodel Inference , 2003 .

[42]  Susan E. Trumbore,et al.  Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area , 1997 .

[43]  J. Collins,et al.  Land-use legacies and soil development in semi-natural ecosystems in the marginal uplands of Ireland , 1997 .

[44]  Edward R. Cook,et al.  Methods of Dendrochronology , 1990 .

[45]  J. Southon,et al.  Catalyst and binder effects in the use of filamentous graphite for AMS , 1987 .