Discriminating External and Internal Causes for Heading Changes in Freely Flying Drosophila

As animals move through the world in search of resources, they change course in reaction to both external sensory cues and internally-generated programs. Elucidating the functional logic of complex search algorithms is challenging because the observable actions of the animal cannot be unambiguously assigned to externally- or internally-triggered events. We present a technique that addresses this challenge by assessing quantitatively the contribution of external stimuli and internal processes. We apply this technique to the analysis of rapid turns (“saccades”) of freely flying Drosophila melanogaster. We show that a single scalar feature computed from the visual stimulus experienced by the animal is sufficient to explain a majority (93%) of the turning decisions. We automatically estimate this scalar value from the observable trajectory, without any assumption regarding the sensory processing. A posteriori, we show that the estimated feature field is consistent with previous results measured in other experimental conditions. The remaining turning decisions, not explained by this feature of the visual input, may be attributed to a combination of deterministic processes based on unobservable internal states and purely stochastic behavior. We cannot distinguish these contributions using external observations alone, but we are able to provide a quantitative bound of their relative importance with respect to stimulus-triggered decisions. Our results suggest that comparatively few saccades in free-flying conditions are a result of an intrinsic spontaneous process, contrary to previous suggestions. We discuss how this technique could be generalized for use in other systems and employed as a tool for classifying effects into sensory, decision, and motor categories when used to analyze data from genetic behavioral screens.

[1]  Michael H. Dickinson,et al.  A task-level model for optomotor yaw regulation in drosophila melanogaster: A frequency-domain system identification approach , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[2]  Michael H Dickinson,et al.  The visual control of landing and obstacle avoidance in the fruit fly Drosophila melanogaster , 2012, Journal of Experimental Biology.

[3]  Mark A. Frye,et al.  Figure Tracking by Flies Is Supported by Parallel Visual Streams , 2012, Current Biology.

[4]  M. Porter,et al.  Critical Truths About Power Laws , 2012, Science.

[5]  M. Heisenberg,et al.  Vision in Drosophila: Genetics of Microbehavior , 2011 .

[6]  William S. Ryu,et al.  An Imbalancing Act: Gap Junctions Reduce the Backward Motor Circuit Activity to Bias C. elegans for Forward Locomotion , 2011, Neuron.

[7]  Zhaoyang Feng,et al.  The Neural Circuits and Synaptic Mechanisms Underlying Motor Initiation in C. elegans , 2011, Cell.

[8]  H. Atwood,et al.  Silencing synaptic communication between random interneurons during Drosophila larval locomotion , 2011, Genes, brain, and behavior.

[9]  A. Borst,et al.  Seeing Things in Motion: Models, Circuits, and Mechanisms , 2011, Neuron.

[10]  A. Gomez-Marin,et al.  Active sampling and decision making in Drosophila chemotaxis , 2011, Nature communications.

[11]  Brian J. Duistermars,et al.  Odor identity influences tracking of temporally patterned plumes in Drosophila , 2011, BMC Neuroscience.

[12]  Damon A. Clark,et al.  Defining the Computational Structure of the Motion Detector in Drosophila , 2011, Neuron.

[13]  A. Borst,et al.  Internal Structure of the Fly Elementary Motion Detector , 2011, Neuron.

[14]  W. Bialek,et al.  Emergence of long timescales and stereotyped behaviors in Caenorhabditis elegans , 2011, Proceedings of the National Academy of Sciences.

[15]  Michael B. Reiser,et al.  Corrigendum: Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior , 2011, Nature Methods.

[16]  Aravinthan D. T. Samuel,et al.  Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans , 2011, Nature Methods.

[17]  Matthew M. Crane,et al.  Real-time multimodal optical control of neurons and muscles in freely-behaving Caenorhabditis elegans , 2011, Nature Methods.

[18]  William Bialek,et al.  Searching for simplicity in the analysis of neurons and behavior , 2010, Proceedings of the National Academy of Sciences.

[19]  David Vere-Jones,et al.  Point Processes , 2011, International Encyclopedia of Statistical Science.

[20]  W. Bialek,et al.  Searching for simplicity: Approaches to the analysis of neurons and behavior , 2010, 1012.3896.

[21]  Alexander Borst,et al.  ON and OFF pathways in Drosophila motion vision , 2010, Nature.

[22]  M. Giorgioni,et al.  Quantifying uncertainties in multi-scale studies of fractured reservoir analogues: Implemented statistical analysis of scan line data from carbonate rocks , 2010 .

[23]  Michael B. Reiser,et al.  Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.

[24]  Alexander Borst,et al.  Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila , 2010, Nature Neuroscience.

[25]  Martin Egelhaaf,et al.  A syntax of hoverfly flight prototypes , 2010, Journal of Experimental Biology.

[26]  Michael H. Dickinson,et al.  Multi-camera real-time three-dimensional tracking of multiple flying animals , 2010, Journal of The Royal Society Interface.

[27]  Nicolas E. Humphries,et al.  Environmental context explains Lévy and Brownian movement patterns of marine predators , 2010, Nature.

[28]  Martin Egelhaaf,et al.  The fine structure of honeybee head and body yaw movements in a homing task , 2010, Proceedings of the Royal Society B: Biological Sciences.

[29]  Barbara Webb,et al.  A model of visual–olfactory integration for odour localisation in free-flying fruit flies , 2010, Journal of Experimental Biology.

[30]  Mark A Frye,et al.  Dynamics of optomotor responses in Drosophila to perturbations in optic flow , 2010, Journal of Experimental Biology.

[31]  Eva A Naumann,et al.  Monitoring Neural Activity with Bioluminescence during Natural Behavior , 2010, Nature Neuroscience.

[32]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[33]  Martin Egelhaaf,et al.  Identifying Prototypical Components in Behaviour Using Clustering Algorithms , 2010, PloS one.

[34]  Michael H. Dickinson,et al.  Multi-camera Realtime 3D Tracking of Multiple Flying Animals , 2010, ArXiv.

[35]  James Sean Humbert,et al.  Implementation of wide-field integration of optic flow for autonomous quadrotor navigation , 2009, Auton. Robots.

[36]  James Sean Humbert,et al.  Erratum to: Implementation of wide-field integration of optic flow for autonomous quadrotor navigation , 2009, Auton. Robots.

[37]  Dario Floreano,et al.  Vision-based control of near-obstacle flight , 2009, Auton. Robots.

[38]  J. Kennedy The Visual Responses of Flying Mosquitoes. , 2009 .

[39]  Aravinthan D. T. Samuel,et al.  Temporal analysis of stochastic turning behavior of swimming C. elegans. , 2009, Journal of neurophysiology.

[40]  M. Egelhaaf,et al.  Variability of blowfly head optomotor responses , 2009, Journal of Experimental Biology.

[41]  Brian J. Duistermars,et al.  Visually Mediated Odor Tracking During Flight in Drosophila , 2009, Journal of visualized experiments : JoVE.

[42]  Dawnis M. Chow,et al.  The neuro-ecology of resource localization in Drosophila: Behavioral components of perception and search , 2009, Fly.

[43]  A. Borst Drosophila's View on Insect Vision , 2009, Current Biology.

[44]  Frederic Bartumeus,et al.  Fractal reorientation clocks: Linking animal behavior to statistical patterns of search , 2008, Proceedings of the National Academy of Sciences.

[45]  Ran Nathan,et al.  An emerging movement ecology paradigm , 2008, Proceedings of the National Academy of Sciences.

[46]  Nicolas Franceschini,et al.  A bee in the corridor: centering and wall-following , 2008, Naturwissenschaften.

[47]  Andy Reynolds,et al.  How many animals really do the Lévy walk? Comment. , 2008, Ecology.

[48]  Alexander Y Katsov,et al.  Motion Processing Streams in Drosophila Are Behaviorally Specialized , 2008, Neuron.

[49]  Fritz-Olaf Lehmann,et al.  The free-flight response of Drosophila to motion of the visual environment , 2008, Journal of Experimental Biology.

[50]  H. Weimerskirch,et al.  Evidence for olfactory search in wandering albatross, Diomedea exulans , 2008, Proceedings of the National Academy of Sciences.

[51]  Andrew P. Martin,et al.  Bumblebee flight distances in relation to the forage landscape. , 2008, The Journal of animal ecology.

[52]  Nicolas E. Humphries,et al.  Scaling laws of marine predator search behaviour , 2008, Nature.

[53]  Simon Benhamou,et al.  How many animals really do the Lévy walk? , 2008, Ecology.

[54]  Martin Egelhaaf,et al.  Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly , 2008, Biological Cybernetics.

[55]  Norman L Carreck,et al.  Honeybees perform optimal scale-free searching flights when attempting to locate a food source , 2007, Journal of Experimental Biology.

[56]  A. M. Edwards,et al.  Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer , 2007, Nature.

[57]  S. Benhamou HOW MANY ANIMALS REALLY DO THE LÉVY WALK , 2007 .

[58]  Frederic Bartumeus,et al.  LÉVY PROCESSES IN ANIMAL MOVEMENT: AN EVOLUTIONARY HYPOTHESIS , 2007 .

[59]  B. Brembs,et al.  Order in Spontaneous Behavior , 2007, PloS one.

[60]  A. Reynolds,et al.  Free-Flight Odor Tracking in Drosophila Is Consistent with an Optimal Intermittent Scale-Free Search , 2007, PloS one.

[61]  Noah J Cowan,et al.  The Critical Role of Locomotion Mechanics in Decoding Sensory Systems , 2007, The Journal of Neuroscience.

[62]  M. Dickinson,et al.  A comparison of visual and haltere-mediated feedback in the control of body saccades in Drosophila melanogaster , 2006, Journal of Experimental Biology.

[63]  Michael H Dickinson,et al.  Visual stimulation of saccades in magnetically tethered Drosophila , 2006, Journal of Experimental Biology.

[64]  M. Dickinson,et al.  Free-flight responses of Drosophila melanogaster to attractive odors , 2006, Journal of Experimental Biology.

[65]  Eero P. Simoncelli,et al.  Dimensionality reduction in neural models: an information-theoretic generalization of spike-triggered average and covariance analysis. , 2006, Journal of vision.

[66]  Martin Egelhaaf,et al.  A single control system for smooth and saccade-like pursuit in blowflies , 2005, Journal of Experimental Biology.

[67]  Michael H Dickinson,et al.  Spatial organization of visuomotor reflexes in Drosophila , 2004, Journal of Experimental Biology.

[68]  Yoshiyuki Kawazoe,et al.  A temporal model of animal behavior based on a fractality in the feeding of Drosophila melanogaster , 1993, Biological Cybernetics.

[69]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[70]  H. Mittelstaedt Telotaxis und Optomotorik von Eristalis bei Augeninversion , 1949, Naturwissenschaften.

[71]  F. Bartumeus,et al.  Helical Lévy walks: Adjusting searching statistics to resource availability in microzooplankton , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Richard E. Overill,et al.  Foundations of Cryptography: Basic Tools , 2002, J. Log. Comput..

[73]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[74]  Oded Goldreich Foundations of Cryptography: Index , 2001 .

[75]  Oded Goldreich,et al.  Foundations of Cryptography: List of Figures , 2001 .

[76]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[77]  C. Tynan Ecological importance of the Southern Boundary of the Antarctic Circumpolar Current , 1998, Nature.

[78]  R. Hengstenberg,et al.  Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.

[79]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[80]  Zhang,et al.  Honeybee navigation en route to the goal: visual flight control and odometry , 1996, The Journal of experimental biology.

[81]  B. Cole Fractal time in animal behaviour: the movement activity of Drosophila , 1995, Animal Behaviour.

[82]  A. Menini,et al.  Quantal-like current fluctuations induced by odorants in olfactory receptor cells , 1995, Nature.

[83]  H. Wagner Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) II. Pursuit of targets , 1986 .

[84]  D. Baylor,et al.  Responses of retinal rods to single photons. , 1979, The Journal of physiology.

[85]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.

[86]  M. Fuortes,et al.  Probability of Occurrence of Discrete Potential Waves in the Eye of Limulus , 1964, The Journal of general physiology.

[87]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .