Sparse Sampling Kaczmarz-Motzkin Method with Linear Convergence

The randomized sparse Kaczmarz method was recently proposed to recover sparse solutions of linear systems. In this work, we introduce a greedy variant of the randomized sparse Kaczmarz method by employing the sampling Kaczmarz-Motzkin method, and prove its linear convergence in expectation with respect to the Bregman distance in the noiseless and noisy cases. This greedy variant can be viewed as a unification of the sampling Kaczmarz-Motzkin method and the randomized sparse Kaczmarz method, and hence inherits the merits of these two methods. Numerically, we report a couple of experimental results to demonstrate its superiority.

[1]  Deanna Needell,et al.  Block Kaczmarz Method with Inequalities , 2014, Journal of Mathematical Imaging and Vision.

[2]  Per Christian Hansen,et al.  AIR Tools II: algebraic iterative reconstruction methods, improved implementation , 2017, Numerical Algorithms.

[3]  Deanna Needell,et al.  Stochastic gradient descent, weighted sampling, and the randomized Kaczmarz algorithm , 2013, Mathematical Programming.

[4]  G. Herman,et al.  Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. , 1970, Journal of theoretical biology.

[5]  Dirk A. Lorenz,et al.  Linear convergence of the randomized sparse Kaczmarz method , 2016, Mathematical Programming.

[6]  Yonina C. Eldar,et al.  Acceleration of randomized Kaczmarz method via the Johnson–Lindenstrauss Lemma , 2010, Numerical Algorithms.

[7]  Marcus A. Magnor,et al.  A sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[8]  Yue M. Lu,et al.  Randomized Kaczmarz algorithms: Exact MSE analysis and optimal sampling probabilities , 2014, 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[9]  Deanna Needell,et al.  Paved with Good Intentions: Analysis of a Randomized Block Kaczmarz Method , 2012, ArXiv.

[10]  Y. Censor The Mathematics of Computerized Tomography (Classics in Applied Mathematics, Vol. 32) , 2002 .

[11]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[12]  Dirk A. Lorenz,et al.  The Linearized Bregman Method via Split Feasibility Problems: Analysis and Generalizations , 2013, SIAM J. Imaging Sci..

[13]  Adrian S. Lewis,et al.  Randomized Methods for Linear Constraints: Convergence Rates and Conditioning , 2008, Math. Oper. Res..

[14]  R. Vershynin,et al.  A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.

[15]  Jamie Haddock,et al.  Greed Works: An Improved Analysis of Sampling Kaczmarz-Motkzin , 2019, ArXiv.

[16]  Wotao Yin,et al.  Augmented 퓁1 and Nuclear-Norm Models with a Globally Linearly Convergent Algorithm , 2012, SIAM J. Imaging Sci..

[17]  Hui Zhang,et al.  A dual algorithm for a class of augmented convex signal recovery models , 2015 .