Fabrication of Hollow Mesoporous CdS@TiO2@Au Microspheres with High Photocatalytic Activity for Hydrogen Evolution from Water under Visible Light

Hollow mesoporous CdS@TiO2@Au microspheres as a photocatalyst have been successfully synthesized by γ-irradiation deposition of Au nanoparticles (NPs) on the double shell of hollow CdS@TiO2 microsp...

[1]  Jiazang Chen,et al.  A 2D/1D TiO2 nanosheet/CdS nanorods heterostructure with enhanced photocatalytic water splitting performance for H2 evolution , 2018 .

[2]  Jiaguo Yu,et al.  Suspensible Cubic-Phase CdS Nanocrystal Photocatalyst: Facile Synthesis and Highly Efficient H2-Evolution Performance in a Sulfur-Rich System , 2018 .

[3]  H. El-Maghrabi,et al.  Synthesis of mesoporous core-shell CdS@TiO 2 (0D and 1D) photocatalysts for solar-driven hydrogen fuel production , 2018 .

[4]  Fazhou Wang,et al.  Synergistic effect of electron-transfer mediator and interfacial catalytic active-site for the enhanced H2-evolution performance: A case study of CdS-Au photocatalyst , 2018 .

[5]  B. Cheng,et al.  Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity , 2017 .

[6]  Peifang Wang,et al.  Combining Heterojunction Engineering with Surface Cocatalyst Modification To Synergistically Enhance the Photocatalytic Hydrogen Evolution Performance of Cadmium Sulfide Nanorods , 2017 .

[7]  S. Yuan,et al.  Carbon nitride coupled with CdS-TiO2 nanodots as 2D/0D ternary composite with enhanced photocatalytic H2 evolution: A novel efficient three-level electron transfer process , 2017 .

[8]  X. Tao,et al.  Graphene-Draped Semiconductors for Enhanced Photocorrosion Resistance and Photocatalytic Properties. , 2017, Journal of the American Chemical Society.

[9]  Dong‐sheng Li,et al.  Pouous TiO2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity , 2017 .

[10]  Jie Han,et al.  Carbon-Incorporated NiO/TiO2 Mesoporous Shells with p-n Heterojunctions for Efficient Visible Light Photocatalysis. , 2016, ACS applied materials & interfaces.

[11]  Quanjun Xiang,et al.  Hierarchical Layered WS2 /Graphene-Modified CdS Nanorods for Efficient Photocatalytic Hydrogen Evolution. , 2016, ChemSusChem.

[12]  B. Su,et al.  Synergistic promotion of solar-driven H2 generation by three-dimensionally ordered macroporous structured TiO2-Au-CdS ternary photocatalyst , 2016 .

[13]  L. Qi,et al.  Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting. , 2016, Small.

[14]  Jiaguo Yu,et al.  Enhanced Photoinduced-Stability and Photocatalytic Activity of CdS by Dual Amorphous Cocatalysts: Synergistic Effect of Ti(IV)-Hole Cocatalyst and Ni(II)-Electron Cocatalyst , 2016 .

[15]  Xueqing Wu,et al.  Synthesis of TiO2@WO3/Au Nanocomposite Hollow Spheres with Controllable Size and High Visible-Light-Driven Photocatalytic Activity , 2016 .

[16]  Jiaguo Yu,et al.  High-surface area mesoporous Pt/TiO₂ hollow chains for efficient formaldehyde decomposition at ambient temperature. , 2016, Journal of hazardous materials.

[17]  Jie Han,et al.  Yolk@Shell Nanoarchitecture of Au@r-GO/TiO₂ Hybrids as Powerful Visible Light Photocatalysts. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[18]  Jie Han,et al.  Nanostructured hybrid shells of r-GO/AuNP/m-TiO₂ as highly active photocatalysts. , 2015, ACS applied materials & interfaces.

[19]  Wenchao Wang,et al.  C60-decorated CdS/TiO2 mesoporous architectures with enhanced photostability and photocatalytic activity for H2 evolution. , 2015, ACS applied materials & interfaces.

[20]  Xueqing Wu,et al.  Synergistic effect of double-shelled and sandwiched TiO₂@Au@C hollow spheres with enhanced visible-light-driven photocatalytic activity. , 2015, ACS applied materials & interfaces.

[21]  Xiaobo Chen,et al.  Titanium dioxide-based nanomaterials for photocatalytic fuel generations. , 2014, Chemical reviews.

[22]  Yi Luo,et al.  A Unique Semiconductor–Metal–Graphene Stack Design to Harness Charge Flow for Photocatalysis , 2014, Advanced materials.

[23]  M. Xing,et al.  Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. , 2014, Journal of the American Chemical Society.

[24]  Di Zhang,et al.  Leaf-inspired hierarchical porous CdS/Au/N-TiO2 heterostructures for visible light photocatalytic hydrogen evolution , 2014 .

[25]  M. Xing,et al.  Hydrophobic Carbon-Doped TiO2/MCF-F Composite as a High Performance Photocatalyst , 2014 .

[26]  Huaiyong Zhu,et al.  Viable photocatalysts under solar-spectrum irradiation: nonplasmonic metal nanoparticles. , 2014, Angewandte Chemie.

[27]  Huarong Liu,et al.  Synthesis of snowman‐like polymer‐silica asymmetric particles by combination of hydrolytic condensation process with γ‐ray radiation initiated seeded emulsion polymerization , 2014 .

[28]  D. Zhao,et al.  A Perspective on Mesoporous TiO2 Materials , 2014 .

[29]  W. Zhou,et al.  Surface tuning for oxide-based nanomaterials as efficient photocatalysts. , 2013, Chemical Society reviews.

[30]  B. Liu,et al.  Self-assembly of hierarchically ordered CdS quantum dots–TiO2 nanotube array heterostructures as efficient visible light photocatalysts for photoredox applications , 2013 .

[31]  Yurii K. Gun'ko,et al.  Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules , 2013 .

[32]  Zhenyi Zhang,et al.  Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation. , 2013, ACS applied materials & interfaces.

[33]  Di Zhang,et al.  Butterfly wing architecture assisted CdS/Au/TiO2 Z-scheme type photocatalytic water splitting , 2013 .

[34]  Say Chye Joachim Loo,et al.  Mesoporous plasmonic Au-TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction , 2012 .

[35]  N. Zhang,et al.  Synthesis of one-dimensional CdS@TiO₂ core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO₂ shell. , 2012, ACS applied materials & interfaces.

[36]  Haifeng Xu,et al.  One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI) , 2012 .

[37]  Weihua Tang,et al.  Synthesis and photocatalytic activity of TiO2@CdS and CdS@TiO2 double-shelled hollow spheres , 2012 .

[38]  Zhi Wei Seh,et al.  Janus Au‐TiO2 Photocatalysts with Strong Localization of Plasmonic Near‐Fields for Efficient Visible‐Light Hydrogen Generation , 2012, Advanced materials.

[39]  Y. Liu,et al.  One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability. , 2012, ACS applied materials & interfaces.

[40]  Chan Beum Park,et al.  Highly Photoactive, Low Bandgap TiO2 Nanoparticles Wrapped by Graphene , 2012, Advanced materials.

[41]  M. Batzill Fundamental aspects of surface engineering of transition metal oxide photocatalysts , 2011 .

[42]  J. Pan,et al.  Hierarchical N-doped TiO2 hollow microspheres consisting of nanothorns with exposed anatase {101} facets. , 2011, Chemical communications.

[43]  D. M. Lee,et al.  A combination of two visible-light responsive photocatalysts for achieving the Z-scheme in the solid state. , 2011, ACS nano.

[44]  M. Jaroniec,et al.  Tunable photocatalytic selectivity of TiO2 films consisted of flower-like microspheres with exposed {001} facets. , 2011, Chemical communications.

[45]  Young Kwang Kim,et al.  Reversing CdS Preparation Order and Its Effects on Photocatalytic Hydrogen Production of CdS/Pt-TiO2 Hybrids Under Visible Light , 2011 .

[46]  Chang Ming Li,et al.  TiO2 and SnO2@TiO2 hollow spheres assembled from anatase TiO2 nanosheets with enhanced lithium storage properties. , 2010, Chemical communications.

[47]  S. Cho,et al.  Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity. , 2010, ACS applied materials & interfaces.

[48]  Jimmy C. Yu,et al.  A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2. , 2009, Environmental science & technology.

[49]  A. Manivannan,et al.  Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. , 2009, Journal of the American Chemical Society.

[50]  T. Nejat Veziroglu,et al.  “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies , 2008 .

[51]  J. Jang,et al.  Location and State of Pt in Platinized CdS/TiO2 Photocatalysts for Hydrogen Production from Water under Visible Light , 2008 .

[52]  Huarong Liu,et al.  A novel approach to hollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via interfacial polymerization , 2006 .

[53]  Huarong Liu,et al.  Synthesis and characterization of MoO2/P(St-co-MMA-co-AA) microspheres via microemulsion by γ-ray radiation , 2006 .

[54]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[55]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.