Chromatic response of a four-telescope integrated-optics discrete beam combiner at the astronomical L band.

We show the results of simulation and experimental study of a 4-telescope zig-zag discrete beam combiner (DBC) for long-baseline stellar interferometry working at the astronomical L band (3 - 4 µm) under the influence of a narrow bandwidth light source. Following Saviauk et al. (2013), we used a quasi-monochromatic visibility-to-pixel matrix (V2PM) for retrieving the complex coherence functions from simulated and experimentally measured power at the output of the device. Simulation and coefficient of determination (R2) measurements show that we are able to retrieve the visibility amplitudes with >95 % accuracy of our chromatic model source up to a bandwidth of 100 nm centred at 3.5 µm. We characterized a DBC manufactured by 3D ultra-fast laser inscription (ULI) written on gallium lanthanum sulphate (GLS). Experimental results showed retrieval of visibility amplitude with an accuracy of 80-90 % at 69 nm bandwidth, validating our simulation. The standard deviation of experimental phase residuals are between 0.1-0.4 rad, which shows that the retrieval procedure is sufficient to get good quality images, where phase perturbations of less than 1 rad are expected under good seeing conditions for astronomical applications.

[1]  Lucas Labadie,et al.  Integrated optics prototype beam combiner for long baseline interferometry in the L and M bands , 2017, 1704.05846.

[2]  O. Guyon,et al.  First on-sky demonstration of an integrated-photonic nulling interferometer: the GLINT instrument , 2019, Monthly Notices of the Royal Astronomical Society.

[3]  S. Nolte,et al.  3D-integrated optics component for astronomical spectro-interferometry. , 2013, Applied optics.

[4]  J. R. Vázquez de Aldana,et al.  3D laser-written silica glass step-index high-contrast waveguides for the 3.5 μm mid-infrared range. , 2015, Optics letters.

[5]  Thomas Pertsch,et al.  Interferometric beam combination with discrete optics. , 2010, Optics letters.

[6]  Stefano Minardi Nonlocality of coupling and the retrieval of field correlations with arrays of waveguides , 2015 .

[7]  G. Montagnier,et al.  PIONIER: a 4-telescope visitor instrument at VLTI , 2011, 1109.1918.

[8]  F. P. Schloerb,et al.  First Results with the IOTA3 Imaging Interferometer: The Spectroscopic Binaries λ Virginis and WR 140 , 2004, astro-ph/0401268.

[9]  Simone Atzeni,et al.  Symmetric polarization-insensitive directional couplers fabricated by femtosecond laser writing. , 2018, Optics express.

[10]  R. A. Minard,et al.  The Sydney University Stellar Interferometer — I. The instrument , 1999 .

[11]  H. M. Dyck,et al.  First 2.2 micrometer results from the iota interferometer , 1995 .

[12]  Rafael Millan-Gabet,et al.  An integrated-optics 3-way beam combiner for IOTA , 2003, SPIE Astronomical Telescopes + Instrumentation.

[13]  A. Ródenas,et al.  High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing. , 2011, Optics express.

[14]  Magdalena Aguiló,et al.  Low-loss 3D-laser-written mid-infrared LiNbO3 depressed-index cladding waveguides for both TE and TM polarizations. , 2017, Optics express.

[15]  Jeremy Allington-Smith,et al.  Ultrafast laser inscription: an enabling technology for astrophotonics. , 2009, Optics express.

[16]  Stefano Minardi,et al.  Modal analysis using photonic lanterns coupled to arrays of waveguides. , 2019, Optics letters.

[17]  Richard J. Mathar,et al.  MIDI the 10 m instrument on the VLTI , 2003 .

[18]  William C. Danchi,et al.  Multiple Dust Shells and Motions around IK Tauri as Seen by Infrared Interferometry , 1997 .

[19]  John D. Monnier,et al.  Imaging with the CHARA interferometer , 2009 .

[20]  Thomas Pertsch,et al.  Towards 3D-photonic, multi-telescope beam combiners for mid-infrared astrointerferometry. , 2017, Optics express.

[21]  E. Tatulli,et al.  Comparison of Fourier and model-based estimators in single-mode multi-axial interferometry , 2006, astro-ph/0602346.

[22]  Robert R. Thomson,et al.  Ultrafast laser-inscribed mid-infrared evanescent field directional couplers in GeAsSe chalcogenide glass , 2018, OSA Continuum.

[23]  M. M. Colavita,et al.  FU Orionis Resolved by Infrared Long-Baseline Interferometry at a 2 AU Scale , 1998 .

[24]  Thomas Pertsch,et al.  Three-dimensional photonic component for multichannel coherence measurements. , 2012, Optics letters.

[25]  Frank Eisenhauer,et al.  Improving GRAVITY towards observations of faint targets , 2018, Astronomical Telescopes + Instrumentation.

[26]  Thomas Pertsch,et al.  Astrointerferometry with discrete optics , 2010, 1005.5000.

[27]  Laurent Jocou,et al.  An integrated optics beam combiner for the second generation VLTI instruments , 2009, 0902.2442.

[28]  Stefano Minardi,et al.  Photonic lattices for astronomical interferometry , 2011, 1108.0849.

[29]  Lucas Labadie,et al.  Ultrafast laser inscription of mid-IR directional couplers for stellar interferometry. , 2014, Optics letters.

[30]  J. G. Robertson,et al.  Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging , 2012, 1210.0603.

[31]  Antoine Labeyrie,et al.  The rotating envelope of the hot star gamma Cassiopeiae resolved by optical interferometry , 1989, Nature.

[32]  Antoine Labeyrie,et al.  Interference fringes obtained on VEGA with two optical telescopes , 1975 .

[33]  Helen L. Butcher,et al.  Demonstration and characterization of ultrafast laser-inscribed mid-infrared waveguides in chalcogenide glass IG2. , 2018, Optics express.