Implementation of controlled phase shift gates and Collins version of Deutsch-Jozsa algorithm on a quadrupolar spin-7/2 nucleus using non-adiabatic geometric phases.

In this work controlled phase shift gates are implemented on a qaudrupolar system, by using non-adiabatic geometric phases. A general procedure is given, for implementing controlled phase shift gates in an 'N' level system. The utility of such controlled phase shift gates, is demonstrated here by implementing 3-qubit Deutsch-Jozsa algorithm on a spin-7/2 quadrupolar nucleus oriented in a liquid crystal matrix.

[1]  W. S. Veeman,et al.  Characterization of quantum algorithms by quantum process tomography using quadrupolar spins in solid-state nuclear magnetic resonance. , 2005, The Journal of chemical physics.

[2]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[3]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[4]  Timothy F. Havel,et al.  Construction and implementation of NMR quantum logic gates for two spin systems. , 1999, Journal of magnetic resonance.

[5]  K. Kim,et al.  Deutsch-Jozsa algorithm as a test of quantum computation , 1998, quant-ph/9807012.

[6]  Quantum-information processing using strongly dipolar coupled nuclear spins , 2006, quant-ph/0610224.

[7]  Kota V. R. M. Murali,et al.  Developments in quantum information processing by nuclear magnetic resonance: Use of quadrupolar and dipolar couplings , 2002 .

[8]  Barry Simon,et al.  Holonomy, the Quantum Adiabatic Theorem, and Berry's Phase , 1983 .

[9]  T. Hogg,et al.  Experimental implementation of an adiabatic quantum optimization algorithm. , 2003, Physical review letters.

[10]  Jonathan A. Jones,et al.  Geometric quantum computation using nuclear magnetic resonance , 2000, Nature.

[11]  Jonathan A. Jones,et al.  Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.

[12]  T. S. Mahesh,et al.  Implementing logic gates and the Deutsch-Jozsa quantum algorithm by two-dimensional NMR using spin- and transition-selective pulses. , 2001, Journal of magnetic resonance.

[13]  T. S. Mahesh,et al.  Toward quantum information processing by nuclear magnetic resonance: pseudopure states and logical operations using selective pulses on an oriented spin 3/2 nucleus , 2001 .

[14]  X. Sigaud Quantum logical operations for spin 3/2 quadrupolar nuclei monitored by quantum state tomography , 2005 .

[15]  Timothy F. Havel,et al.  Generalized methods for the development of quantum logic gates for an NMR quantum information processor , 1999 .

[16]  Peter Diehl,et al.  NMR: Basic Principles and Progress , 1969 .

[17]  Timothy F. Havel,et al.  Multiqubit logic gates in NMR quantum computing , 2000 .

[18]  O. Mangold,et al.  NMR tomography of the three-qubit Deutsch-Jozsa algorithm (10 pages) , 2004 .

[19]  I. S. Oliveira,et al.  Quantum-state tomography for quadrupole nuclei and its application on a two-qubit system , 2004 .

[20]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[21]  Hong-xiang Sun,et al.  Method of multifrequency excitation for creating pseudopure states for NMR quantum computing , 2001 .

[22]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[23]  M. Berry The Adiabatic Phase and Pancharatnam's Phase for Polarized Light , 1987 .

[24]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  G. Castagnoli,et al.  Geometric quantum computation with NMR , 1999, quant-ph/9910052.

[26]  Peter W. Shor Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1999 .

[27]  Pines,et al.  Study of the Aharonov-Anandan quantum phase by NMR interferometry. , 1988, Physical review letters.

[28]  P. Benioff Quantum Mechanical Models of Turing Machines That Dissipate No Energy , 1982 .

[29]  W. Banzhaf,et al.  Quantum and classical parallelism in parity algorithms for ensemble quantum computers , 2005 .

[30]  Timothy F. Havel,et al.  Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing , 1997, quant-ph/9709001.

[31]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[32]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[33]  Use of non-adiabatic geometric phase for quantum computing by NMR. , 2005, Journal of magnetic resonance.

[34]  N. B. Freeman An implementation of the Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer , 1998, quant-ph/9808039.

[35]  Aharonov,et al.  Phase change during a cyclic quantum evolution. , 1987, Physical review letters.

[36]  S. Ramelow,et al.  Deutsch-Jozsa algorithm using triggered single photons from a single quantum dot , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[37]  W Xiang-Bin,et al.  Nonadiabatic conditional geometric phase shift with NMR. , 2001, Physical review letters.

[38]  Anil Kumar,et al.  Experimental implementation of a quantum algorithm in a multiqubit NMR system formed by an oriented 7/2 spin , 2006 .

[39]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[40]  T. S. Mahesh,et al.  Ensemble quantum-information processing by NMR: Implementation of gates and the creation of pseudopure states using dipolar coupled spins as qubits , 2002 .

[41]  B. Fung,et al.  Nuclear magnetic resonance quantum logic gates using quadrupolar nuclei , 2000 .

[42]  Anil Kumar,et al.  Geometric quantum computation using fictitious spin- 1/2 subspaces of strongly dipolar coupled nuclear spins , 2006 .

[43]  I. S. Oliveira,et al.  A study of the relaxation dynamics in a quadrupolar NMR system using Quantum State Tomography. , 2008, Journal of magnetic resonance.

[44]  Shi-Liang Zhu,et al.  Implementation of universal quantum gates based on nonadiabatic geometric phases. , 2002, Physical review letters.

[45]  B. M. Fung,et al.  NMR simulation of an eight-state quantum system , 2001 .

[46]  D. Leung,et al.  Experimental realization of a quantum algorithm , 1998, Nature.

[47]  J. A. Jones,et al.  Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer , 1998, quant-ph/9801027.

[48]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[49]  H. S. Allen The Quantum Theory , 1928, Nature.

[50]  Timothy F. Havel,et al.  Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing , 2002, quant-ph/0202065.

[51]  K. V. Ramanathan,et al.  Quantum-information processing by nuclear magnetic resonance: Experimental implementation of half-adder and subtractor operations using an oriented spin-7/2 system , 2002 .

[52]  Dieter Suter,et al.  Berry's phase in magnetic resonance , 1987 .

[53]  I. S. Oliveira,et al.  Relaxation of coherent states in a two-qubit NMR quadrupole system , 2003 .

[54]  Bruschweiler Novel strategy for database searching in spin liouville space by NMR ensemble computing , 2000, Physical review letters.

[55]  Vladimir L. Ermakov,et al.  Experimental realization of a continuous version of the Grover algorithm , 2002 .

[56]  Solution of the Deutsch-Josza Problem by NMR Ensemble Computing without Sensitivity Scaling , 2000, quant-ph/0006024.

[57]  I. S. Oliveira,et al.  Quantum logical operations for spin 3/2 quadrupolar nuclei monitored by quantum state tomography. , 2005, Journal of magnetic resonance.

[58]  D. Suter,et al.  Study of the Aharonov-Anandan Phase by NMR Interferometry , 1988 .

[59]  W. Xiang-bin,et al.  Erratum: Nonadiabatic Conditional Geometric Phase Shift with NMR [Phys. Rev. Lett. 87, 097901 (2001)] , 2002 .

[60]  B. Fung Use of pairs of pseudopure states for NMR quantum computing , 2001 .

[61]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[62]  Andrew M. Childs,et al.  Robustness of adiabatic quantum computation , 2001, quant-ph/0108048.

[63]  Ranabir Das,et al.  Use of quadrupolar nuclei for quantum-information processing by nuclear magnetic resonance: Implementation of a quantum algorithm , 2003 .

[64]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.