An unsymmetric stress formulation for reissner-mindlin plates: a simple and locking-free rectangular element

In the present paper a simple mixed-hybrid element for the linear analysis of Reissner-Mindlin plates is discussed. The element is derived from a modified Reissner functional and standard bilinear (isoparametric) interpolation for displacement and rotations is assumed whereas local stresses (rather than stress resultants and moments) are explicitly modelled. It is assumed that in plane shear stresses are not a priori symmetric. This choice allows to decouple the equilibrium equations, and involves introducing an in-plane infinitesimal rotation field, corresponding to drilling degrees of freedom. Out-of-plane shear stresses are then obtained such that equilibrium equations are exactly satisfied. The proposed element does not exhibit locking effects at all: i.e. the shear deformation energy is zero in the thin plate limit. Details of the formulation are provided, and the performances of the element are assessed with reference to well-established benchmark problems.

[1]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[2]  S. Atluri,et al.  Rotations in computational solid mechanics , 1995 .

[3]  Stefan Ebenfeld A comparison of the plate theories in the sense of Kirchhoff-Love and Reissner-Mindlin , 1999 .

[4]  Luciano Teresi,et al.  On Variational Approaches to Plate Modes , 1997 .

[5]  Antonio Tralli,et al.  A hybrid stress-assumed transition element for solid-to-beam and plate-to-beam connections , 2002 .

[6]  Rakesh K. Kapania,et al.  A survey of recent shell finite elements , 2000 .

[7]  F. Brezzi,et al.  On drilling degrees of freedom , 1989 .

[8]  D. Allman A quadrilateral finite element including vertex rotations for plane elasticity analysis , 1988 .

[9]  Jean-Louis Batoz,et al.  Evaluation of a new quadrilateral thin plate bending element , 1982 .

[10]  Klaus-Jürgen Bathe,et al.  The inf–sup condition and its evaluation for mixed finite element methods , 2001 .

[11]  T. Pian,et al.  Rational approach for assumed stress finite elements , 1984 .

[12]  Ferdinando Auricchio,et al.  A shear deformable plate element with an exact thin limit , 1994 .

[13]  K. Bathe Finite Element Procedures , 1995 .

[14]  E. Reissner On the Foundations of Generalized Linear Shell Theory , 1969 .

[15]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[16]  Robert D. Cook,et al.  Four-node ‘flat’ shell element: Drilling degrees of freedom, membrane-bending coupling, warped geometry, and behavior , 1994 .

[17]  Alf Samuelsson,et al.  Linked interpolation for Reissner-Mindlin plate elements: Part I—A simple quadrilateral , 1993 .

[18]  Adnan Ibrahimbegovic,et al.  Quadrilateral finite elements for analysis of thick and thin plates , 1993 .

[19]  L. Morley Skew plates and structures , 1963 .

[20]  Antonio Tralli,et al.  A refined theory for laminated beams: Part I—A new high order approach , 1993 .

[21]  Antonio Tralli,et al.  A two-dimensional theory for the analysis of laminated plates , 1994 .

[22]  S. Atluri,et al.  Large displacement analysis of plates by a stress-based finite element approach , 1986 .

[23]  Robert L. Taylor,et al.  Linked interpolation for Reissner‐Mindlin plate elements: Part II—A simple triangle , 1993 .

[24]  J. A. Freitas,et al.  A hybrid-mixed finite element model based on Legendre polynomials for Reissner-Mindlin plates , 1996 .

[25]  Gangan Prathap,et al.  A field-consistency approach to plate elements , 1997 .

[26]  S. Timoshenko History of strength of materials , 1953 .

[27]  Jaroslav Mackerle,et al.  Static and dynamic analysis of plates using finite element and boundary element techniques: a bibliography (1992–1994) , 1995 .

[28]  K. Sze,et al.  A rational formulation of isoparametric hybrid stress elements for three-dimensional stress analysis , 1990 .

[29]  B. Häggblad,et al.  Specifications of boundary conditions for Reissner/Mindlin plate bending finite elements , 1990 .

[30]  Carlo Lovadina,et al.  Analysis of a mixed finite element method for the Reissner-Mindlin plate problems , 1998 .

[31]  P. Podio-Guidugli,et al.  An exact derivation of the thin plate equation , 1989 .

[32]  E. Reissner A note on variational principles in elasticity , 1965 .

[33]  Klaus-Jürgen Bathe,et al.  On evaluating the inf–sup condition for plate bending elements , 1997 .

[34]  A. Cazzani,et al.  Four-noded mixed finite elements, using unsymmetric stresses, for linear analysis of membranes , 1993 .

[35]  K. Y. Sze,et al.  a Hybrid Stress Quadrilateral Shell Element with Full Rotational D.O.F.S , 1997 .

[36]  Luca Deseri,et al.  SIMPLE AND EFFECTIVE EQUILIBRIUM MODELS FOR VIBRATION ANALYSIS OF CURVED RODS , 1996 .

[37]  T. Pian Derivation of element stiffness matrices by assumed stress distributions , 1964 .

[38]  M. Savoia,et al.  Elasticity interior solution for orthotropic strips and the accuracy of beam theories , 1999 .

[39]  Douglas N. Arnold,et al.  The boundary layer for the reissner-mindlin plate model , 1990 .

[40]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[41]  Rezak Ayad,et al.  A new hybrid‐mixed variational approach for Reissner–Mindlin plates. The MiSP model , 1998 .