The rod circuit in the rabbit retina

Mammalian retinae have a well-defined neuronal pathway that serves rod vision. In rabbit retina, the different populations of interneurons in the rod pathway can be selectively labeled, either separately or in combination. The rod bipolar cells show protein kinase C immunoreactivity; the rod (AII) amacrine cells can be distinguished in nuclear-yellow labeled retina; the rod reciprocal (S1 & S2) amacrine cells accumulate serotonin; and the dopaminergic amacrine cells show tyrosine-hydroxylase immunoreactivity. Furthermore, intracellular dye injection of the microscopically identified interneurons enables whole-population and single-cell studies to be combined in the same tissue. Using this approach, we have been able to analyze systematically the neuronal architecture of the rod circuit across the rabbit retina and compare its organization with that of the rod circuit in central cat retina. In rabbit retina, the rod interneurons are not organized in a uniform neuronal module that is simply scaled up from central to peripheral retina. Moreover, peripheral fields in superior and inferior retina that have equivalent densities of each neuronal type show markedly different rod bipolar to AII amacrine convergence ratios, with the result that many more rod photoreceptors converge on an AII amacrine cell in superior retina. In rabbit retina, much of the convergence in the rod circuit occurs in the outer retina whereas, in central cat retina, it is more evenly distributed between the inner and outer retina.

[1]  R. Masland,et al.  Shapes and distributions of the catecholamine‐accumulating neurons in the rabbit retina , 1990, The Journal of comparative neurology.

[2]  J. Provis,et al.  The distribution and size of ganglion cells in the retina of the pigmented rabbit: A quantitative analysis , 1979, The Journal of comparative neurology.

[3]  J. Stone,et al.  Morphology of catecholamine-containing amacrine cells in the cat's retina, as seen in retinal whole mounts , 1979, Brain Research.

[4]  E. Strettoi,et al.  Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina , 1990, The Journal of comparative neurology.

[5]  C. W. Oyster,et al.  Morphology and distribution of tyrosine hydroxylase-like immunoreactive neurons in the cat retina. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[6]  R. Pourcho Uptake of [3H]glycine and [3H]GABA by amacrine cells in the cat retina , 1980, Brain Research.

[7]  D. I. Vaney Morphological identification of serotonin-accumulating neurons in the living retina. , 1986, Science.

[8]  N. Daw,et al.  The effects of serotonin agonists and antagonists on the response properties of complex ganglion cells in the rabbit's retina , 1988, Visual Neuroscience.

[9]  S. R. Y. Cajal La rétine des vertébrés , 1892 .

[10]  H. Young,et al.  Rod‐signal interneurons in the rabbit retina: 1. Rod bipolar cells , 1991, The Journal of comparative neurology.

[11]  K. Horikawa,et al.  A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates , 1988, Journal of Neuroscience Methods.

[12]  T. Voigt,et al.  Dopaminergic innervation of A II amacrine cells in mammalian retina , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  J. Dowling,et al.  Synaptic organization of the dopaminergic neurons in the rabbit retina , 1978, The Journal of comparative neurology.

[14]  H. Kolb,et al.  A17: a broad-field amacrine cell in the rod system of the cat retina. , 1985, Journal of neurophysiology.

[15]  A. Mariani,et al.  Synapses from bipolar cells onto dopaminergic amacrine cells in cat and rabbit retinas , 1988, Brain Research.

[16]  Satoru Kato,et al.  Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina , 1983, Nature.

[17]  P. Sterling,et al.  Architecture of rod and cone circuits to the on-beta ganglion cell , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  K. Negishi,et al.  Dopamine cells and rod bipolar cells contain protein kinase C-like immunoreactivity in some vertebrate retinas , 1988, Neuroscience Letters.

[19]  H. Wässle,et al.  The distribution of the alpha type of ganglion cells in the cat's retina , 1975, The Journal of comparative neurology.

[20]  N. Daw,et al.  Neuropharmacological analysis of the role of indoleamine-accumulating amacrine cells in the rabbit retina , 1988, Visual Neuroscience.

[21]  R. Dacheux,et al.  The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  W. Loewenstein,et al.  Permeability of the cell-to-cell membrane channels in mammalian cell juncton. , 1979, Science.

[23]  A. Hughes,et al.  Chapter 9 New perspectives in retinal organisation , 1985 .

[24]  H. Kolb,et al.  Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. , 1978, Journal of neurophysiology.

[25]  P Sterling,et al.  Rod bipolar array in the cat retina: Pattern of input from rods and GABA‐accumulating amacrine cells , 1987, The Journal of comparative neurology.

[26]  Helga Kolb,et al.  A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina , 1975, Brain Research.

[27]  S. Massey,et al.  Chapter 11 Cell types using glutamate as a neurotransmitter in the vertebrate retina , 1990 .

[28]  H. Wagner,et al.  GABA and tyrosine hydroxylase immunocytochemistry reveal different patterns of colocalization in retinal neurons of various vertebrates , 1990, The Journal of comparative neurology.

[29]  W. W. Stewart,et al.  Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer , 1978, Cell.

[30]  B. Boycott,et al.  The connections between bipolar cells and photoreceptors in the retina of the domestic cat , 1973, The Journal of comparative neurology.

[31]  Helga Kolb,et al.  Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study , 1981, Vision Research.

[32]  M. Piccolino,et al.  Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3':5'-monophosphate in horizontal cells of turtle retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  S A Bloomfield,et al.  A functional organization of ON and OFF pathways in the rabbit retina , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  R. Nelson,et al.  AII amacrine cells quicken time course of rod signals in the cat retina. , 1982, Journal of neurophysiology.

[35]  P Sterling,et al.  Microcircuitry of bipolar cells in cat retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  Ralph J. Jensen,et al.  Rod pathways in mammalian retinae , 1990, Trends in Neurosciences.

[37]  P Sterling,et al.  Accumulation of (3H)glycine by cone bipolar neurons in the cat retina , 1986, The Journal of comparative neurology.

[38]  R. Masland,et al.  Connections of indoleamine‐accumulating cells in the rabbit retina , 1989, The Journal of comparative neurology.

[39]  D. I. Vaney,et al.  Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin , 1991, Neuroscience Letters.

[40]  D. Dacey,et al.  Monoamine‐accumulating ganglion cell type of the cat's retina , 1989, The Journal of comparative neurology.

[41]  J. Masferrer,et al.  12(R)-hydroxyeicosatetraenoic acid, an endogenous corneal arachidonate metabolite, lowers intraocular pressure in rabbits. , 1990, Investigative ophthalmology & visual science.

[42]  P. Sterling Microcircuitry of the cat retina. , 1983, Annual review of neuroscience.

[43]  Helga Kolb,et al.  Rod and Cone Pathways in the Inner Plexiform Layer of Cat Retina , 1974, Science.

[44]  H. Young,et al.  Rod‐signal interneurons in the rabbit retina: 2. AII amacrine cells , 1991, The Journal of comparative neurology.

[45]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[46]  H. Young,et al.  The retinae of Prototherian mammals possess neuronal types that are characteristic of non-mammalian retinae , 1990, Visual Neuroscience.

[47]  R. Jensen Mechanism and site of action of a dopamine D1 antagonist in the rabbit retina , 1989, Visual Neuroscience.

[48]  H. Kolb The inner plexiform layer in the retina of the cat: electron microscopic observations , 1979, Journal of neurocytology.

[49]  C. W. Oyster,et al.  Identification and characterization of tyrosine hydroxylase immunoreactive amacrine cells. , 1984, Investigative ophthalmology & visual science.

[50]  D. I. Vaney,et al.  Chapter 2 The mosaic of amacrine cells in the mammalian retina , 1990 .

[51]  R. Masland,et al.  A system of indoleamine-accumulating neurons in the rabbit retina , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  T. Voigt,et al.  Morphological and immunocytochemical identification of indoleamine- accumulating neurons in the cat retina , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  B. Boycott,et al.  The morphological types of ganglion cells of the domestic cat's retina , 1974, The Journal of physiology.

[54]  E. V. Famiglietti,et al.  Structural basis for ON-and OFF-center responses in retinal ganglion cells. , 1976, Science.

[55]  A. H. Bunt Fine structure and radioautography of rabbit photoreceptor cells. , 1978, Investigative ophthalmology & visual science.

[56]  E. Raviola,et al.  Light and electron microscopic observations on the inner plexiform layer of the rabbit retina. , 1967, The American journal of anatomy.

[57]  R. Pourcho Dopaminergic amacrine cells in the cat retina , 1982, Brain Research.

[58]  B. Boycott,et al.  Dendritic territories of cat retinal ganglion cells , 1981, Nature.

[59]  R. Dacheux,et al.  Excitatory dyad synapse in rabbit retina. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[60]  B. Boycott,et al.  Matching populations of amacrine cells in the inner nuclear and ganglion cell layers of the rabbit retina , 1981, The Journal of comparative neurology.

[61]  R. Marc The role of glycine in the mammalian retina , 1988 .

[62]  R. Pourcho,et al.  A combined golgi and autoradiographic study of (3H)glycine‐accumulating amacrine cells in the cat retina , 1985, The Journal of comparative neurology.

[63]  R. Jensen,et al.  Effects of dopamine antagonists on receptive fields of brisk cells and directionally selective cells in the rabbit retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  H. Wässle,et al.  Dopaminergic and indoleamine-accumulating amacrine cells express GABA- like immunoreactivity in the cat retina , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  N. Osborne,et al.  Direct histochemical localisation of 5,7-dihydroxytryptamine and the uptake of serotonin by a subpopulation of GABA neurones in the rabbit retina , 1986, Brain Research.