THE KECK + MAGELLAN SURVEY FOR LYMAN LIMIT ABSORPTION. III. SAMPLE DEFINITION AND COLUMN DENSITY MEASUREMENTS

We present an absorption-line survey of optically thick gas clouds -- Lyman Limit Systems (LLSs) -- observed at high dispersion with spectrometers on the Keck and Magellan telescopes. We measure column densities of neutral hydrogen NHI and associated metal-line transitions for 157 LLSs at z=1.76-4.39 restricted to 10^17.3 < NHI < 10^20.3. An empirical analysis of ionic ratios indicates an increasing ionization state of the gas with decreasing NHI and that the majority of LLSs are highly ionized, confirming previous expectations. The Si^+/H^0 ratio spans nearly four orders-of-magnitude, implying a large dispersion in the gas metallicity. Fewer than 5% of these LLSs have no positive detection of a metal transition; by z~3, nearly all gas that is dense enough to exhibit a very high Lyman limit opacity has previously been polluted by heavy elements. We add new measurements to the small subset of LLS (~5-10) that may have super-solar abundances. High Si^+/Fe^+ ratios suggest an alpha-enhanced medium whereas the Si^+/C^+ ratios do not exhibit the super-solar enhancement inferred previously for the Lya forest.

[1]  S. Ellison,et al.  Coincident, 100 kpc scale damped Lyα absorption towards a binary QSO : how large are galaxies at z ∼ 3? , 2007, 0704.1816.

[2]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[3]  S. Burles,et al.  To Appear in the Astrophysical Journal The Deuterium Abundance Towards Q1937–1009 , 1997 .

[4]  Jason X. Prochaska,et al.  The Age-Metallicity Relation of the Universe in Neutral Gas: The First 100 Damped Lyα Systems , 2003 .

[5]  Stephen A. Shectman,et al.  MIKE: A Double Echelle Spectrograph for the Magellan Telescopes at Las Campanas Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[6]  Edward B. Jenkins,et al.  A UNIFIED REPRESENTATION OF GAS-PHASE ELEMENT DEPLETIONS IN THE INTERSTELLAR MEDIUM , 2009, 0905.3173.

[7]  C. Steidel,et al.  THE STRUCTURE AND KINEMATICS OF THE CIRCUMGALACTIC MEDIUM FROM FAR-ULTRAVIOLET SPECTRA OF z ≃ 2–3 GALAXIES , 2010, 1003.0679.

[8]  Jason X. Prochaska,et al.  On the Kinematics of the Damped Lyman-α Protogalaxies , 1997, astro-ph/9704169.

[9]  A. Popping,et al.  The ESO UVES advanced data products quasar sample - I. Dataset and new NH I measurements of damped absorbers , 2013, 1307.0678.

[10]  D. Keres̆,et al.  The small covering factor of cold accretion streams , 2010, 1011.1693.

[11]  UK.,et al.  A homogeneous sample of sub-damped Lyman α systems- I. Construction of the sample and chemical abundance measurements , 2003, astro-ph/0307049.

[12]  C. Steidel,et al.  A survey of Lyman-limit absorption in the spectra of 59 high-redshift QSOs , 1989 .

[13]  J. Xavier Prochaska,et al.  GALACTIC AND CIRCUMGALACTIC O vi AND ITS IMPACT ON THE COSMOLOGICAL METAL AND BARYON BUDGETS AT 2 < z ≲ 3.5 , 2014, 1401.1811.

[14]  J. Prochaska,et al.  Absorption-line systems in simulated galaxies fed by cold streams , 2011, 1103.2130.

[15]  U. Chicago,et al.  On the Nature of Velocity Fields in High-z Galaxies , 2007, astro-ph/0703701.

[16]  J. Prochaska,et al.  THE KECK + MAGELLAN SURVEY FOR LYMAN LIMIT ABSORPTION. II. A CASE STUDY ON METALLICITY VARIATIONS , 2009, 0912.0293.

[17]  J. Prochaska,et al.  Towards a unified description of the intergalactic medium at redshift z ≈ 2.5 , 2013, 1310.0052.

[18]  Quasars Probing Quasars. II. The Anisotropic Clustering of Optically Thick Absorbers around Quasars , 2006, astro-ph/0606084.

[19]  J. Prochaska,et al.  CONFRONTING SIMULATIONS OF OPTICALLY THICK GAS IN MASSIVE HALOS WITH OBSERVATIONS AT z = 2–3 , 2013, 1308.1669.

[20]  D. Weinberg,et al.  A BUDGET AND ACCOUNTING OF METALS AT z ∼ 0: RESULTS FROM THE COS-HALOS SURVEY , 2013, 1310.2253.

[21]  C. Steidel,et al.  THE GASEOUS ENVIRONMENT OF HIGH-z GALAXIES: PRECISION MEASUREMENTS OF NEUTRAL HYDROGEN IN THE CIRCUMGALACTIC MEDIUM OF z ∼ 2–3 GALAXIES IN THE KECK BARYONIC STRUCTURE SURVEY , 2012, 1202.6055.

[22]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[23]  U. Michigan,et al.  Supersolar Super-Lyman Limit Systems , 2006, astro-ph/0606573.

[24]  W. Sargent,et al.  Metallicity of the Intergalactic Medium Using Pixel Statistics. III. Silicon , 2003, astro-ph/0310664.

[25]  J. Xavier Prochaska,et al.  THE FUNDAMENTAL PLANE OF DAMPED Lyα SYSTEMS , 2013, 1303.7239.

[26]  S. Ellison,et al.  Coincident , 100 kpc-scale damped Lyman alpha absorption towards a binary QSO : how large are galaxies at z ∼ 3 ? , 2007 .

[27]  B. Tinsley Stellar lifetimes and abundance ratios in chemical evolution , 1979 .

[28]  J. Prochaska,et al.  QUASARS PROBING QUASARS. VII. THE PINNACLE OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDS MASSIVE z ∼ 2 GALAXIES , 2014, 1409.6344.

[29]  The ESI/Keck II Damped Lyα Abundance Database , 2003, astro-ph/0305312.

[30]  The SDSS-DR5 Survey for Proximate Damped Lyα Systems , 2007, astro-ph/0703594.

[31]  J. Prochaska,et al.  KECK ECHELLETTE SPECTROGRAPH AND IMAGER OBSERVATIONS OF METAL-POOR DAMPED Lyα SYSTEMS , 2010 .

[32]  Trystyn A. M. Berg,et al.  The Most Metal-rich Damped Lyα Systems at z ≳ 1.5 I: The Data , 2014, 1412.5491.

[33]  J. Prochaska,et al.  QUASARS PROBING QUASARS. III. NEW CLUES TO FEEDBACK, QUENCHING, AND THE PHYSICS OF MASSIVE GALAXY FORMATION , 2008, 0806.0862.

[34]  J. Prochaska,et al.  Detection of Pristine Gas Two Billion Years After the Big Bang , 2011, Science.

[35]  W. Sargent,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 4/9/03 METALLICITY OF THE INTERGALACTIC MEDIUM USING PIXEL STATISTICS. II. THE DISTRIBUTION OF METALS AS TRACED BY CIV 1 , 2003 .

[36]  B. Savage,et al.  The analysis of apparent optical depth profiles for interstellar absorption lines , 1991 .

[37]  David Tytler,et al.  QSO Lyman limit absorption , 1982, Nature.

[38]  D. York,et al.  Element abundances at high redshift: MIKE observations of sub-damped Lyman α absorbers at 1.7 < z < 2.4 , 2013, 1307.7103.

[39]  J. Prochaska,et al.  A DIRECT MEASUREMENT OF THE INTERGALACTIC MEDIUM OPACITY TO H i IONIZING PHOTONS , 2009, 0910.0009.

[40]  J. Xavier Prochaska,et al.  THE HST/ACS+WFC3 SURVEY FOR LYMAN LIMIT SYSTEMS. II. SCIENCE , 2012, 1204.3093.

[41]  J. Xavier Prochaska,et al.  METALLICITY EVOLUTION OF DAMPED Lyα SYSTEMS OUT TO z ∼ 5 , 2012, 1205.5047.

[42]  Joseph Ribaudo,et al.  A HUBBLE SPACE TELESCOPE STUDY OF LYMAN LIMIT SYSTEMS: CENSUS AND EVOLUTION , 2011, 1105.0659.

[43]  D. Weinberg,et al.  Metal Enrichment of the Intergalactic Medium at z = 3 by Galactic Winds , 2000, astro-ph/0006345.

[44]  A. McWilliam ABUNDANCE RATIOS AND GALACTIC CHEMICAL EVOLUTION , 1997 .

[45]  George D. Becker,et al.  The Giant Gemini GMOS survey of zem > 4.4 quasars – I. Measuring the mean free path across cosmic time , 2014, 1402.4154.

[46]  A. Myers,et al.  DISSECTING THE GASEOUS HALOS OF z ∼ 2 DAMPED Lyα SYSTEMS WITH CLOSE QUASAR PAIRS , 2014, 1411.6016.

[47]  M. Irwin,et al.  Evolution of Lyman-limit absorption systems over the redshift range 0.40 < Z < 4.69 , 1994 .

[48]  Hot halos around high redshift protogalaxies : Observations of O VI and N V absorption in damped Lyman-α systems , 2007, astro-ph/0701392.

[49]  J. Prochaska,et al.  The UCSD HIRES/Keck I Damped Lyα Abundance Database. I. The Data , 2001, astro-ph/0110350.

[50]  J. Prochaska,et al.  The Keck+Magellan Survey for Lyman Limit Absorption. I. The Frequency Distribution of Super Lyman Limit Systems , 2006, astro-ph/0610726.

[51]  Caltech,et al.  Neutral hydrogen in galaxy haloes at the peak of the cosmic star formation history , 2014, 1409.1919.

[52]  A Direct Precision Measurement of the Intergalactic Lyα Opacity at 2 ≤ z ≤ 4.2* ** , 2007, 0709.2382.

[53]  A homogeneous sample of sub-damped Lyman α systems — III. Total gas mass ΩH i+He ii at z > 2⋆ , 2005, astro-ph/0507353.

[54]  J. Prochaska,et al.  DISSECTING THE PROPERTIES OF OPTICALLY THICK HYDROGEN AT THE PEAK OF COSMIC STAR FORMATION HISTORY , 2013, 1308.1101.

[55]  H. Epps,et al.  ESI, a New Keck Observatory Echellette Spectrograph and Imager , 2002, astro-ph/0204297.

[56]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[57]  L. Cowie,et al.  THE EVOLUTION OF LYMAN LIMIT ABSORPTION SYSTEMS TO REDSHIFT SIX , 2010, 1007.3262.

[58]  J. Prochaska,et al.  Ionized Gas in Damped Lyα Protogalaxies. I. Model-independent Inferences from Kinematic Data , 2000, astro-ph/0009081.

[59]  J. Tinker,et al.  AN EMPIRICAL CHARACTERIZATION OF EXTENDED COOL GAS AROUND GALAXIES USING Mg ii ABSORPTION FEATURES , 2010, 1004.0705.

[60]  Rebecca A. Bernstein,et al.  MASE: A New Data-Reduction Pipeline for the Magellan Echellette Spectrograph , 2009, 0910.1834.

[61]  J. Prochaska,et al.  A DEFINITIVE SURVEY FOR LYMAN LIMIT SYSTEMS AT z ∼ 3.5 WITH THE SLOAN DIGITAL SKY SURVEY , 2009, 0912.0292.

[62]  C. Steidel The properties of Lyman limit absorbing clouds at Z = 3 - Physical conditions in the extended gaseous halos of high-redshift galaxies , 1990 .

[63]  J. Prochaska,et al.  THE COS-HALOS SURVEY: AN EMPIRICAL DESCRIPTION OF METAL-LINE ABSORPTION IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM , 2012, 1212.0558.

[64]  Eső,et al.  The missing metals problem: II. How many metals are in z ~ 2.2 galaxies? , 2005, astro-ph/0511698.

[65]  Stephen A. Shectman,et al.  The MagE spectrograph , 2008, Astronomical Telescopes + Instrumentation.

[66]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[67]  Jason X. Prochaska,et al.  The UCSD/Keck Damped Lyα Abundance Database: A Decade of High-Resolution Spectroscopy , 2007 .

[68]  Institute for Advanced Study,et al.  QUASARS PROBING QUASARS. VI. EXCESS H i ABSORPTION WITHIN ONE PROPER Mpc OF z ∼ 2 QUASARS , 2013, 1308.6222.

[69]  J. Prochaska The Physical Nature of the Lyman Limit Systems , 1998, astro-ph/9811357.

[70]  J. Prochaska,et al.  THE BIMODAL METALLICITY DISTRIBUTION OF THE COOL CIRCUMGALACTIC MEDIUM AT z ≲ 1 , 2013, 1302.5424.

[71]  R. Simcoe THE CARBON CONTENT OF INTERGALACTIC GAS AT z = 4.25 AND ITS EVOLUTION TOWARD z = 2.4 , 2011, 1106.2810.

[72]  J. Prochaska,et al.  The Kinematics of the Damped Lyman Alpha Protogalaxies , 1997 .

[73]  E. Jenkins,et al.  Interstellar Medium Absorption Profile Spectrograph Observations of Interstellar Neutral Argon and the Implications for Partially Ionized Gas , 1998 .