THE KECK + MAGELLAN SURVEY FOR LYMAN LIMIT ABSORPTION. III. SAMPLE DEFINITION AND COLUMN DENSITY MEASUREMENTS
暂无分享,去创建一个
J. Xavier Prochaska | University of California | John M. O'Meara | Santa Cruz | Cutler Group | J. Prochaska | R. Bernstein | S. Burles | M. Fumagalli | J. O’Meara | Rebecca A. Bernstein | Michele Fumagalli | Scott M. Burles UCOLick | Saint Michael's College | Durham University | Observatories of the Carnegie Institution for Science
[1] S. Ellison,et al. Coincident, 100 kpc scale damped Lyα absorption towards a binary QSO : how large are galaxies at z ∼ 3? , 2007, 0704.1816.
[2] M. Couture,et al. HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.
[3] S. Burles,et al. To Appear in the Astrophysical Journal The Deuterium Abundance Towards Q1937–1009 , 1997 .
[4] Jason X. Prochaska,et al. The Age-Metallicity Relation of the Universe in Neutral Gas: The First 100 Damped Lyα Systems , 2003 .
[5] Stephen A. Shectman,et al. MIKE: A Double Echelle Spectrograph for the Magellan Telescopes at Las Campanas Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.
[6] Edward B. Jenkins,et al. A UNIFIED REPRESENTATION OF GAS-PHASE ELEMENT DEPLETIONS IN THE INTERSTELLAR MEDIUM , 2009, 0905.3173.
[7] C. Steidel,et al. THE STRUCTURE AND KINEMATICS OF THE CIRCUMGALACTIC MEDIUM FROM FAR-ULTRAVIOLET SPECTRA OF z ≃ 2–3 GALAXIES , 2010, 1003.0679.
[8] Jason X. Prochaska,et al. On the Kinematics of the Damped Lyman-α Protogalaxies , 1997, astro-ph/9704169.
[9] A. Popping,et al. The ESO UVES advanced data products quasar sample - I. Dataset and new NH I measurements of damped absorbers , 2013, 1307.0678.
[10] D. Keres̆,et al. The small covering factor of cold accretion streams , 2010, 1011.1693.
[11] UK.,et al. A homogeneous sample of sub-damped Lyman α systems- I. Construction of the sample and chemical abundance measurements , 2003, astro-ph/0307049.
[12] C. Steidel,et al. A survey of Lyman-limit absorption in the spectra of 59 high-redshift QSOs , 1989 .
[13] J. Xavier Prochaska,et al. GALACTIC AND CIRCUMGALACTIC O vi AND ITS IMPACT ON THE COSMOLOGICAL METAL AND BARYON BUDGETS AT 2 < z ≲ 3.5 , 2014, 1401.1811.
[14] J. Prochaska,et al. Absorption-line systems in simulated galaxies fed by cold streams , 2011, 1103.2130.
[15] U. Chicago,et al. On the Nature of Velocity Fields in High-z Galaxies , 2007, astro-ph/0703701.
[16] J. Prochaska,et al. THE KECK + MAGELLAN SURVEY FOR LYMAN LIMIT ABSORPTION. II. A CASE STUDY ON METALLICITY VARIATIONS , 2009, 0912.0293.
[17] J. Prochaska,et al. Towards a unified description of the intergalactic medium at redshift z ≈ 2.5 , 2013, 1310.0052.
[18] Quasars Probing Quasars. II. The Anisotropic Clustering of Optically Thick Absorbers around Quasars , 2006, astro-ph/0606084.
[19] J. Prochaska,et al. CONFRONTING SIMULATIONS OF OPTICALLY THICK GAS IN MASSIVE HALOS WITH OBSERVATIONS AT z = 2–3 , 2013, 1308.1669.
[20] D. Weinberg,et al. A BUDGET AND ACCOUNTING OF METALS AT z ∼ 0: RESULTS FROM THE COS-HALOS SURVEY , 2013, 1310.2253.
[21] C. Steidel,et al. THE GASEOUS ENVIRONMENT OF HIGH-z GALAXIES: PRECISION MEASUREMENTS OF NEUTRAL HYDROGEN IN THE CIRCUMGALACTIC MEDIUM OF z ∼ 2–3 GALAXIES IN THE KECK BARYONIC STRUCTURE SURVEY , 2012, 1202.6055.
[22] R. Davé,et al. How do galaxies get their gas , 2002, astro-ph/0407095.
[23] U. Michigan,et al. Supersolar Super-Lyman Limit Systems , 2006, astro-ph/0606573.
[24] W. Sargent,et al. Metallicity of the Intergalactic Medium Using Pixel Statistics. III. Silicon , 2003, astro-ph/0310664.
[25] J. Xavier Prochaska,et al. THE FUNDAMENTAL PLANE OF DAMPED Lyα SYSTEMS , 2013, 1303.7239.
[26] S. Ellison,et al. Coincident , 100 kpc-scale damped Lyman alpha absorption towards a binary QSO : how large are galaxies at z ∼ 3 ? , 2007 .
[27] B. Tinsley. Stellar lifetimes and abundance ratios in chemical evolution , 1979 .
[28] J. Prochaska,et al. QUASARS PROBING QUASARS. VII. THE PINNACLE OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDS MASSIVE z ∼ 2 GALAXIES , 2014, 1409.6344.
[29] The ESI/Keck II Damped Lyα Abundance Database , 2003, astro-ph/0305312.
[30] The SDSS-DR5 Survey for Proximate Damped Lyα Systems , 2007, astro-ph/0703594.
[31] J. Prochaska,et al. KECK ECHELLETTE SPECTROGRAPH AND IMAGER OBSERVATIONS OF METAL-POOR DAMPED Lyα SYSTEMS , 2010 .
[32] Trystyn A. M. Berg,et al. The Most Metal-rich Damped Lyα Systems at z ≳ 1.5 I: The Data , 2014, 1412.5491.
[33] J. Prochaska,et al. QUASARS PROBING QUASARS. III. NEW CLUES TO FEEDBACK, QUENCHING, AND THE PHYSICS OF MASSIVE GALAXY FORMATION , 2008, 0806.0862.
[34] J. Prochaska,et al. Detection of Pristine Gas Two Billion Years After the Big Bang , 2011, Science.
[35] W. Sargent,et al. ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 4/9/03 METALLICITY OF THE INTERGALACTIC MEDIUM USING PIXEL STATISTICS. II. THE DISTRIBUTION OF METALS AS TRACED BY CIV 1 , 2003 .
[36] B. Savage,et al. The analysis of apparent optical depth profiles for interstellar absorption lines , 1991 .
[37] David Tytler,et al. QSO Lyman limit absorption , 1982, Nature.
[38] D. York,et al. Element abundances at high redshift: MIKE observations of sub-damped Lyman α absorbers at 1.7 < z < 2.4 , 2013, 1307.7103.
[39] J. Prochaska,et al. A DIRECT MEASUREMENT OF THE INTERGALACTIC MEDIUM OPACITY TO H i IONIZING PHOTONS , 2009, 0910.0009.
[40] J. Xavier Prochaska,et al. THE HST/ACS+WFC3 SURVEY FOR LYMAN LIMIT SYSTEMS. II. SCIENCE , 2012, 1204.3093.
[41] J. Xavier Prochaska,et al. METALLICITY EVOLUTION OF DAMPED Lyα SYSTEMS OUT TO z ∼ 5 , 2012, 1205.5047.
[42] Joseph Ribaudo,et al. A HUBBLE SPACE TELESCOPE STUDY OF LYMAN LIMIT SYSTEMS: CENSUS AND EVOLUTION , 2011, 1105.0659.
[43] D. Weinberg,et al. Metal Enrichment of the Intergalactic Medium at z = 3 by Galactic Winds , 2000, astro-ph/0006345.
[44] A. McWilliam. ABUNDANCE RATIOS AND GALACTIC CHEMICAL EVOLUTION , 1997 .
[45] George D. Becker,et al. The Giant Gemini GMOS survey of zem > 4.4 quasars – I. Measuring the mean free path across cosmic time , 2014, 1402.4154.
[46] A. Myers,et al. DISSECTING THE GASEOUS HALOS OF z ∼ 2 DAMPED Lyα SYSTEMS WITH CLOSE QUASAR PAIRS , 2014, 1411.6016.
[47] M. Irwin,et al. Evolution of Lyman-limit absorption systems over the redshift range 0.40 < Z < 4.69 , 1994 .
[48] Hot halos around high redshift protogalaxies : Observations of O VI and N V absorption in damped Lyman-α systems , 2007, astro-ph/0701392.
[49] J. Prochaska,et al. The UCSD HIRES/Keck I Damped Lyα Abundance Database. I. The Data , 2001, astro-ph/0110350.
[50] J. Prochaska,et al. The Keck+Magellan Survey for Lyman Limit Absorption. I. The Frequency Distribution of Super Lyman Limit Systems , 2006, astro-ph/0610726.
[51] Caltech,et al. Neutral hydrogen in galaxy haloes at the peak of the cosmic star formation history , 2014, 1409.1919.
[52] A Direct Precision Measurement of the Intergalactic Lyα Opacity at 2 ≤ z ≤ 4.2* ** , 2007, 0709.2382.
[53] A homogeneous sample of sub-damped Lyman α systems — III. Total gas mass ΩH i+He ii at z > 2⋆ , 2005, astro-ph/0507353.
[54] J. Prochaska,et al. DISSECTING THE PROPERTIES OF OPTICALLY THICK HYDROGEN AT THE PEAK OF COSMIC STAR FORMATION HISTORY , 2013, 1308.1101.
[55] H. Epps,et al. ESI, a New Keck Observatory Echellette Spectrograph and Imager , 2002, astro-ph/0204297.
[56] M. Asplund,et al. The chemical composition of the Sun , 2009, 0909.0948.
[57] L. Cowie,et al. THE EVOLUTION OF LYMAN LIMIT ABSORPTION SYSTEMS TO REDSHIFT SIX , 2010, 1007.3262.
[58] J. Prochaska,et al. Ionized Gas in Damped Lyα Protogalaxies. I. Model-independent Inferences from Kinematic Data , 2000, astro-ph/0009081.
[59] J. Tinker,et al. AN EMPIRICAL CHARACTERIZATION OF EXTENDED COOL GAS AROUND GALAXIES USING Mg ii ABSORPTION FEATURES , 2010, 1004.0705.
[60] Rebecca A. Bernstein,et al. MASE: A New Data-Reduction Pipeline for the Magellan Echellette Spectrograph , 2009, 0910.1834.
[61] J. Prochaska,et al. A DEFINITIVE SURVEY FOR LYMAN LIMIT SYSTEMS AT z ∼ 3.5 WITH THE SLOAN DIGITAL SKY SURVEY , 2009, 0912.0292.
[62] C. Steidel. The properties of Lyman limit absorbing clouds at Z = 3 - Physical conditions in the extended gaseous halos of high-redshift galaxies , 1990 .
[63] J. Prochaska,et al. THE COS-HALOS SURVEY: AN EMPIRICAL DESCRIPTION OF METAL-LINE ABSORPTION IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM , 2012, 1212.0558.
[64] Eső,et al. The missing metals problem: II. How many metals are in z ~ 2.2 galaxies? , 2005, astro-ph/0511698.
[65] Stephen A. Shectman,et al. The MagE spectrograph , 2008, Astronomical Telescopes + Instrumentation.
[66] R. Teyssier,et al. Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.
[67] Jason X. Prochaska,et al. The UCSD/Keck Damped Lyα Abundance Database: A Decade of High-Resolution Spectroscopy , 2007 .
[68] Institute for Advanced Study,et al. QUASARS PROBING QUASARS. VI. EXCESS H i ABSORPTION WITHIN ONE PROPER Mpc OF z ∼ 2 QUASARS , 2013, 1308.6222.
[69] J. Prochaska. The Physical Nature of the Lyman Limit Systems , 1998, astro-ph/9811357.
[70] J. Prochaska,et al. THE BIMODAL METALLICITY DISTRIBUTION OF THE COOL CIRCUMGALACTIC MEDIUM AT z ≲ 1 , 2013, 1302.5424.
[71] R. Simcoe. THE CARBON CONTENT OF INTERGALACTIC GAS AT z = 4.25 AND ITS EVOLUTION TOWARD z = 2.4 , 2011, 1106.2810.
[72] J. Prochaska,et al. The Kinematics of the Damped Lyman Alpha Protogalaxies , 1997 .
[73] E. Jenkins,et al. Interstellar Medium Absorption Profile Spectrograph Observations of Interstellar Neutral Argon and the Implications for Partially Ionized Gas , 1998 .