Thulium doped LuAG ceramics for passively mode locked lasers.

Passive mode-locking of a thulium doped Lu3Al5O12 ceramic laser is demonstrated at 2022 nm. By applying different near surface GaSb-based saturable absorber mirrors, stable self-starting mode-locked operation with pulse durations between 2 and 4 picoseconds was achieved at a repetition rate of 92 MHz. The SESAM mode-locked Tm:LuAG ceramic laser exhibits an excellent stability with a fundamental beat note extinction ratio of 80 dB above the noise level. Furthermore, spectroscopic properties of Tm:LuAG ceramics at room temperature are presented.

[1]  Wenbin Liu,et al.  The history, development, and future prospects for laser ceramics: A review , 2013 .

[2]  Norman P. Barnes,et al.  Theoretical temperature-dependent branching ratios and laser thresholds of the 3F4 to 3H6 levels of Tm(3+) in ten garnets , 1991 .

[3]  Woohong Kim,et al.  Ceramic Laser Materials , 2012, Materials.

[4]  Tamer F. Refaat,et al.  Twenty years of Tm:Ho:YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing , 2015 .

[5]  Shengzhi Zhao,et al.  Efficient CW Dual-Wavelength and Passively $Q$ -Switched Tm:LuAG Lasers , 2015, IEEE Photonics Technology Letters.

[6]  P. Koopmann,et al.  2 µm Laser Sources and Their Possible Applications , 2010 .

[7]  Valentin Petrov,et al.  Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals , 2015 .

[8]  E. Heumann,et al.  Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications , 2004 .

[9]  Y. Ju,et al.  Diode-pumped Tm:LuAG laser at room temperature , 2008 .

[10]  Dafu Cui,et al.  Light scattering and 2-μm laser performance of Tm:YAG ceramic , 2011 .

[11]  Yan Lin Aung,et al.  PROGRESS IN CERAMIC LASERS , 2006 .

[12]  W. Gao,et al.  Highly efficient 2 μm Tm:YAG ceramic laser. , 2012, Optics letters.

[13]  J. Taylor,et al.  Tm-doped fiber laser mode-locked by graphene-polymer composite. , 2012, Optics express.

[14]  Qing Wang,et al.  High-efficiency diode-pumped Tm:YAG ceramic laser , 2013 .

[15]  Günter Steinmeyer,et al.  Absorption recovery dynamics in 2 µm GaSb-based SESAMs , 2014 .

[16]  Günter Steinmeyer,et al.  GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm. , 2015, Optics express.

[17]  N. Barnes,et al.  Diode-pumped, room-temperature Tm:LuAG laser. , 1995, Applied optics.

[18]  T Dekorsy,et al.  1.21 W passively mode-locked Tm:LuAG laser. , 2015, Optics express.

[19]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[20]  J G Hawley,et al.  Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 νm. , 1996, Applied optics.

[21]  Xavier Mateos,et al.  SESAM mode-locked Tm:CALGO laser at 2 µm , 2016 .

[22]  D K Killinger,et al.  Development of a Tunable, Narrow-Linewidth, CW 2.066-mum Ho:YLF Laser for Remote Sensing of Atmospheric CO(2) and H(2)O. , 1998, Applied optics.

[23]  Xavier Mateos,et al.  Femtosecond Pulses near 2 µm from a Tm:KLuW Laser Mode-Locked by a Single-Walled Carbon Nanotube Saturable Absorber , 2012 .

[24]  Yubai Pan,et al.  Diode‐Pumped Tm:YAG Ceramic Laser , 2009 .

[25]  Jian-qiu Xu,et al.  Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser , 2013 .

[26]  Kunio Yoshida,et al.  Synthesis of Nd3+,Cr3+‐codoped YAG Ceramics for High‐Efficiency Solid‐State Lasers , 1995 .

[27]  Yan Lin Aung,et al.  Ceramic laser materials , 2008 .

[28]  S. Jiang,et al.  Mode-locked 2 mum laser with highly thulium-doped silicate fiber. , 2009, Optics letters.

[29]  Alex Dergachev,et al.  High-energy, kHz-rate, picosecond, 2-μm laser pump source for mid-IR nonlinear optical devices , 2013, Photonics West - Lasers and Applications in Science and Engineering.

[30]  Chen Hu,et al.  Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 µm. , 2016, Optics express.

[31]  Günter Steinmeyer,et al.  GaSb‐based semiconductor saturable absorber mirrors for mode‐locking 2 µm semiconductor disk lasers , 2012 .