Towards an optimised processing pipeline for diffusion MRI data: Effects of artefact corrections on diffusion metrics and their age associations in UK Biobank

Increasing interest in the structural and functional organization of the human brain in health and disease encourages the acquisition of big datasets consisting of multiple neuroimaging modalities accompanied by additional information obtained from health records, cognitive tests, biomarkers and genotypes. Diffusion weighted magnetic resonance imaging data enables a range of promising imaging phenotypes probing structural connections as well as macroanatomical and microstructural properties of the brain. The reliability and biological sensitivity and specificity of diffusion data depend on processing pipeline. A state-of-the-art framework for data processing facilitates crossstudy harmonisation and reduces pipeline-related variability. Using diffusion data from the UK Biobank we provide a comprehensive evaluation of different processing steps that have been suggested to reduce imaging artefacts and improve reliability of diffusion metrics. We consider a general pipeline comprising 7 post-processing blocks: noise correction; Gibbs ringing correction; evaluation of field distortions; susceptibility, eddy-current and motion-induced distortion corrections; bias field correction; spatial smoothing; and final diffusion metric estimations. Based on this evaluation, we suggest an optimised diffusion pipeline for processing of diffusion weighted imaging data.

[1]  Stamatios N. Sotiropoulos,et al.  Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images , 2016, NeuroImage.

[2]  O. Andreassen,et al.  Dissociable diffusion MRI patterns of white matter microstructure and connectivity in Alzheimer’s disease spectrum , 2017, Scientific Reports.

[3]  Hui Zhang,et al.  Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement , 2017, NeuroImage.

[4]  Jan Sijbers,et al.  Comparing isotropic and anisotropic smoothing for voxel‐based DTI analyses: A simulation study , 2009, Human brain mapping.

[5]  Martin J. Graves,et al.  MRI from Picture to Proton , 2017 .

[6]  Pradipta Maji,et al.  Rough Sets and Stomped Normal Distribution for Simultaneous Segmentation and Bias Field Correction in Brain MR Images , 2015, IEEE Transactions on Image Processing.

[7]  T. Kaufmann,et al.  An Augmented Aging Process in Brain White Matter in HIV , 2018, bioRxiv.

[8]  Stephen M. Smith,et al.  Permutation inference for the general linear model , 2014, NeuroImage.

[9]  Ragini Verma,et al.  The impact of quality assurance assessment on diffusion tensor imaging outcomes in a large-scale population-based cohort , 2016, NeuroImage.

[10]  Nadim Joni Shah,et al.  Diffusion kurtosis metrics as biomarkers of microstructural development: A comparative study of a group of children and a group of adults , 2017, NeuroImage.

[11]  Thomas E. Nichols,et al.  Acquisition and voxelwise analysis of multi-subject diffusion data with Tract-Based Spatial Statistics , 2007, Nature Protocols.

[12]  Stephen M. Smith,et al.  Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference , 2009, NeuroImage.

[13]  Christophe Phillips,et al.  Influence of Noise Correction on Intra- and Inter-Subject Variability of Quantitative Metrics in Diffusion Kurtosis Imaging , 2014, PloS one.

[14]  Jan Sijbers,et al.  Denoising of diffusion MRI using random matrix theory , 2016, NeuroImage.

[15]  O. Andreassen,et al.  White matter aberrations and age-related trajectories in patients with schizophrenia and bipolar disorder revealed by diffusion tensor imaging , 2018, Scientific Reports.

[16]  Joseph A. Helpern,et al.  White matter characterization with diffusional kurtosis imaging , 2011, NeuroImage.

[17]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[18]  P. Matthews,et al.  Multimodal population brain imaging in the UK Biobank prospective epidemiological study , 2016, Nature Neuroscience.

[19]  Santiago Aja-Fernández,et al.  Noise estimation in parallel MRI: GRAPPA and SENSE. , 2014, Magnetic resonance imaging.

[20]  Stamatios N. Sotiropoulos,et al.  An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging , 2016, NeuroImage.

[21]  Timothy Edward John Behrens,et al.  Addressing a systematic vibration artifact in diffusion‐weighted MRI , 2009, Human brain mapping.

[22]  Marco Ganzetti,et al.  Quantitative Evaluation of Intensity Inhomogeneity Correction Methods for Structural MR Brain Images , 2015, Neuroinformatics.

[23]  Daniel Rueckert,et al.  Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data , 2006, NeuroImage.

[24]  Ivan I Maximov,et al.  Robust tensor estimation in diffusion tensor imaging. , 2011, Journal of magnetic resonance.

[25]  Martin Styner,et al.  Diffusion imaging quality control via entropy of principal direction distribution , 2013, NeuroImage.

[26]  Jan Sijbers,et al.  Weighted linear least squares estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls , 2013, NeuroImage.

[27]  Timothy Edward John Behrens,et al.  Diffusion MRI : from quantitative measurement to in vivo neuroanatomy , 2014 .

[28]  Nadim Joni Shah,et al.  Spatially variable Rician noise in magnetic resonance imaging , 2012, Medical Image Anal..

[29]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[30]  Martin Styner,et al.  DTIPrep: quality control of diffusion-weighted images , 2014, Front. Neuroinform..

[31]  Khader M Hasan,et al.  A framework for quality control and parameter optimization in diffusion tensor imaging: theoretical analysis and validation. , 2007, Magnetic resonance imaging.

[32]  Aleksandra Pizurica,et al.  The effect of Gibbs ringing artifacts on measures derived from diffusion MRI , 2015, NeuroImage.

[33]  L. Westlye,et al.  Effects of APOE on brain white matter microstructure in healthy adults , 2012, Neurology.

[34]  Alexander Leemans,et al.  Fast and accurate Slicewise OutLIer Detection (SOLID) with informed model estimation for diffusion MRI data , 2018, NeuroImage.

[35]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[36]  Carlo Pierpaoli,et al.  Comparison of EPI Distortion Correction Methods in Diffusion Tensor MRI Using a Novel Framework , 2008, MICCAI.

[37]  J. Helpern,et al.  Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[38]  Ragini Verma,et al.  Effects of physiological noise in population analysis of diffusion tensor MRI data , 2011, NeuroImage.

[39]  Jelle Veraart,et al.  Gibbs ringing in diffusion MRI , 2016, Magnetic resonance in medicine.

[40]  Krzysztof J. Gorgolewski,et al.  MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites , 2016, bioRxiv.

[41]  O. Andreassen,et al.  Association of Heritable Cognitive Ability and Psychopathology With White Matter Properties in Children and Adolescents , 2018, JAMA psychiatry.

[42]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[43]  Pengfei Xu,et al.  PANDA: a pipeline toolbox for analyzing brain diffusion images , 2013, Front. Hum. Neurosci..

[44]  Daniel Rueckert,et al.  Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project , 2019, NeuroImage.

[45]  Sebastian Vellmer,et al.  Validation of DWI pre-processing procedures for reliable differentiation between human brain gliomas. , 2017, Zeitschrift fur medizinische Physik.

[46]  Ivan I Maximov,et al.  Statistical Instability of TBSS Analysis Based on DTI Fitting Algorithm , 2015, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[47]  A. Malhotra,et al.  Integration of routine QA data into mega‐analysis may improve quality and sensitivity of multisite diffusion tensor imaging studies , 2018, Human brain mapping.

[48]  Catherine Lebel,et al.  Diffusion MRI of white matter microstructure development in childhood and adolescence: Methods, challenges and progress , 2017, Developmental Cognitive Neuroscience.

[49]  I. Maximov,et al.  Differentiation of glioma malignancy grade using diffusion MRI. , 2017, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics.

[50]  Knut K. Kolskår,et al.  Assessing distinct patterns of cognitive aging using tissue-specific brain age prediction based on diffusion tensor imaging and brain morphometry , 2018, bioRxiv.

[51]  Muhammad G. Saleh,et al.  Assessing the performance of different DTI motion correction strategies in the presence of EPI distortion correction , 2016, Human brain mapping.

[52]  Jelle Veraart,et al.  Diffusion MRI noise mapping using random matrix theory , 2016, Magnetic resonance in medicine.

[53]  Lars T. Westlye,et al.  Assessing distinct patterns of cognitive aging using tissue-specific brain age prediction based on diffusion tensor imaging and brain morphometry , 2018, bioRxiv.

[54]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Ludovica Griffanti,et al.  Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank , 2017, NeuroImage.

[56]  Bibek Dhital,et al.  Gibbs‐ringing artifact removal based on local subvoxel‐shifts , 2015, Magnetic resonance in medicine.

[57]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[58]  A. Dale,et al.  Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. , 2010, Cerebral cortex.