Branching thalamic afferents link action and perception.

Recent observations of single axons and review of older literature show that axons afferent to the thalamus commonly branch, sending one branch to the thalamus and another to a motor or premotor center of the brain stem. That is, the messages that the thalamus relays to the cerebral cortex can be regarded as copies of motor instructions. This pattern of axonal branching is reviewed, particularly for the somatosensory and the visual pathways. The extent to which this anatomical evidence relates to views that link action to perception is explored. Most pathways going through the thalamus to the cortex are already involved in motor mechanisms. These motor links occur before and during activity in the parallel and hierarchical corticocortical circuitry that currently forms the focus of many studies of perceptual processing.

[1]  C. Sherrington On the Anatomical Constitution of Nerves of Skeletal Muscles; with Remarks on Recurrent Fibres in the Ventral Spinal Nerve‐root , 1894, The Journal of physiology.

[2]  V. Horsley The Linacre Lecture ON THE FUNCTION OF THE SO-CALLED MOTOR AREA OF THE BRAIN , 1909, British medical journal.

[3]  G. Holmes,et al.  Disturbances of Vision from Cerebral Lesions, with Special Reference to the Cortical Representation of the Macula , 1916, Proceedings of the Royal Society of Medicine.

[4]  M. Zigler Touch and kinesthesis. , 1930 .

[5]  A. Brodal,et al.  Neurological Anatomy in Relation to Clinical Medicine , 1950 .

[6]  W. Andrew The vertebrate visual system , 1957 .

[7]  W. Pitts,et al.  Anatomy and Physiology of Vision in the Frog (Rana pipiens) , 1960, The Journal of general physiology.

[8]  M. B. Bender,et al.  The superior colliculi and eye movements. An experimental study in the monkey. , 1966, Archives of neurology.

[9]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[10]  A. L. Yarbus,et al.  Eye Movements and Vision , 1967, Springer US.

[11]  G. Schneider Two visual systems. , 1969, Science.

[12]  F. J. Clark,et al.  Characteristics of knee joint receptors in the cat , 1969, The Journal of physiology.

[13]  D Symmes,et al.  The superior colliculus and higher visual functions in the monkey. , 1969, Brain research.

[14]  J. Simpson,et al.  NEUROLOGICAL ANATOMY IN RELATION TO CLINICAL MEDICINE 2nd edition , 1970 .

[15]  R. M. Warren,et al.  HELMHOLTZ ON PERCEPTION: ITS PHYSIOLOGY AND DEVELOPMENT. , 1970 .

[16]  R. Kalil,et al.  Corticofugal influence on activity of lateral geniculate neurons in the cat. , 1970, Journal of neurophysiology.

[17]  L H Mathers,et al.  Tectal projection to the posterior thalamus of the squirrel monkey. , 1971, Brain research.

[18]  F. Plum,et al.  The diagnosis of stupor and coma. , 1972, Contemporary neurology series.

[19]  J. Sprague The superior colliculus and pretectum in visual behavior. , 1972, Investigative ophthalmology.

[20]  D. Lindsley,et al.  Visual input to the pulvinar via lateral geniculate, superior colliculus and visual cortex in the cat. , 1972, Experimental neurology.

[21]  Schiller Ph Some functional characteristics of the superior colliculus of the rhesus monkey. , 1972 .

[22]  Some functional characteristics of the superior colliculus of the rhesus monkey. , 1972, Bibliotheca ophthalmologica : supplementa ad ophthalmologica.

[23]  H. Silfvenius,et al.  Course and termination of fibres from the nucleus Z of the medulla oblongata. An experimental light microscopical study in the cat. , 1973, Brain research.

[24]  S. Skoglund Joint Receptors and Kinaesthesis , 1973 .

[25]  Collicular system as oculomotor coordination or visual perception centers. , 1974, Transactions of the American Neurological Association.

[26]  J. Stone,et al.  Retinal distribution and central projections of Y-, X-, and W-cells of the cat's retina. , 1974, Journal of neurophysiology.

[27]  P. Bach-y-Rita,et al.  Basic Mechanisms of Ocular Motility and Their Clinical Implications , 1976 .

[28]  K. Berkley Different targets of different neurons in nucleus gracilis of the cat , 1975, The Journal of comparative neurology.

[29]  C. Gilbert,et al.  The projections of cells in different layers of the cat's visual cortex , 1975, The Journal of comparative neurology.

[30]  M. Sanders Handbook of Sensory Physiology , 1975 .

[31]  J. C. Vuletin,et al.  A Light and Electron Microscopic Study , 1976 .

[32]  H. Johansson,et al.  Input from ipsilateral proprio‐ and exteroceptive hind limb afferents to nucleus Z of the cat medulla oblongata. , 1977, The Journal of physiology.

[33]  W. Singer,et al.  The role of visual cortex for binocular interactions in the cat lateral geniculate nucleus , 1977, Brain Research.

[34]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[35]  P J Snow,et al.  The morphology of hair follicle afferent fibre collaterals in the spinal cord of the cat , 1977, The Journal of physiology.

[36]  P. Matthews,et al.  Muscle afferents and kinaesthesia. , 1977, British medical bulletin.

[37]  Patrick D. Wall,et al.  SENSORY FUNCTIONS WHICH REMAIN IN MAN AFTER COMPLETE TRANSECTION OF DORSAL COLUMNS , 1977 .

[38]  M. Colonnier,et al.  Thalamic projections of the superior colliculus in the rhesus monkey, Macaca mulatta. A light and electron microscopic study , 1977, The Journal of comparative neurology.

[39]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[40]  W. C. Hall,et al.  The organization of the pulvinar in the grey squirrel (Sciurus carolinensis). II. Synaptic organization and comparisons with the dorsal lateral geniculate nucleus , 1977, The Journal of comparative neurology.

[41]  C. Vierck Comparison of forelimb and hindlimb motor deficits following dorsal column section in monkeys , 1978, Brain Research.

[42]  M. Perenin,et al.  Visual function within the hemianopic field following early cerebral hemidecortication in man—I. Spatial localization , 1978, Neuropsychologia.

[43]  L. Kruger,et al.  An axonal transport study of the ascending projection of medial lemniscal neurons in the rat , 1980, The Journal of comparative neurology.

[44]  K. Berkley,et al.  Differences in the collateralization of neuronal projections from the dorsal column nuclei and lateral cervical nucleus to the thalamus and tectum in the cat: An anatomical study using two different double-labeling techniques , 1980, Brain Research.

[45]  I. Thompson,et al.  Retinal ganglion cell projections to the superior colliculus of the hamster demonstrated by the horseradish peroxidase technique , 1980, Neuroscience Letters.

[46]  H. Wässle,et al.  The retinal projection to the superior colliculus in the cat: A quantitative study with HRP , 1980, The Journal of comparative neurology.

[47]  P. D. Spear,et al.  Influence of the cortico-geniculate pathway on response properties of cat lateral geniculate neurons , 1981, Brain Research.

[48]  H. Wässle,et al.  Almost all ganglion cells in the rabbit retina project to the superior colliculus , 1981, Brain Research.

[49]  A. G. Brown,et al.  Direct observations on the contacts made between Ia afferent fibres and alpha‐motoneurones in the cat's lumbosacral spinal cord. , 1981, The Journal of physiology.

[50]  John Nolte,et al.  Human Brain , 1981 .

[51]  F. J. Clark,et al.  Signaling of kinesthetic information by peripheral sensory receptors. , 1982, Annual review of neuroscience.

[52]  P. Matthews Where does Sherrington's "muscular sense" originate? Muscles, joints, corollary discharges? , 1982, Annual review of neuroscience.

[53]  D. B. Bender Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus , 1983, Brain Research.

[54]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[55]  R. Linden,et al.  Massive retinotectal projection in rats , 1983, Brain Research.

[56]  M. Bull,et al.  Differences in the neurons that project from the dorsal column nuclei to the diencephalon, pretectum, and tectum in the cat. , 1984, Somatosensory research.

[57]  R. W. Rodieck,et al.  Central projections of cat retinal ganglion cells , 1985, The Journal of comparative neurology.

[58]  L. Chalupa,et al.  The laminar distribution of cortical connections with the tecto- and cortico-recipient zones in the cat's lateral posterior nucleus , 1985, Neuroscience.

[59]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[60]  L. Weiskrantz Blindsight : a case study and implications , 1986 .

[61]  M. Sur,et al.  Morphology of physiologically identified retinogeniculate X- and Y-axons in the cat. , 1987, Journal of neurophysiology.

[62]  C. Pierrot-Deseilligny,et al.  Saccade deficits after a unilateral lesion affecting the superior colliculus. , 1991, Journal of neurology, neurosurgery, and psychiatry.

[63]  A. Leventhal The neural basis of visual function , 1991 .

[64]  B. V. Updyke,et al.  Corticotectal projections in the cat: Anterograde transport studies of twenty‐five cortical areas , 1992, The Journal of comparative neurology.

[65]  F. Ebner,et al.  Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on the barrel field cortex , 1992, The Journal of comparative neurology.

[66]  D C Van Essen,et al.  Information processing in the primate visual system: an integrated systems perspective. , 1992, Science.

[67]  T. Sejnowski,et al.  A critique of pure vision , 1993 .

[68]  H. Ojima Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex. , 1994, Cerebral cortex.

[69]  Joel L. Davis,et al.  Large-Scale Neuronal Theories of the Brain , 1994 .

[70]  J. Cronly-Dillon,et al.  Vision and visual dysfunction. , 1994, Journal of cognitive neuroscience.

[71]  M. Deschenes,et al.  Corticothalamic Projections from the Cortical Barrel Field to the Somatosensory Thalamus in Rats: A Single‐fibre Study Using Biocytin as an Anterograde Tracer , 1995, The European journal of neuroscience.

[72]  R. Guillery Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. , 1995, Journal of anatomy.

[73]  J. Bourassa,et al.  Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer , 1995, Neuroscience.

[74]  S. Sherman,et al.  Morphology of physiologically identified retinal X and Y axons in the cat's thalamus and midbrain as revealed by intraaxonal injection of biocytin , 1995, The Journal of comparative neurology.

[75]  R. Guillery,et al.  Functional organization of thalamocortical relays. , 1996, Journal of neurophysiology.

[76]  Adonis K Moschovakis,et al.  The superior colliculus and eye movement control , 1996, Current Opinion in Neurobiology.

[77]  J. K. Harting,et al.  Corticocortical communication via the thalamus: Ultrastructural studies of corticothalamic projections from area 17 to the lateral posterior nucleus of the cat and inferior pulvinar nucleus of the owl monkey , 1998, The Journal of comparative neurology.

[78]  H. Markram,et al.  Differential signaling via the same axon of neocortical pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[79]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[80]  K. Rockland,et al.  Convergence and branching patterns of round, type 2 corticopulvinar axons , 1998, The Journal of comparative neurology.

[81]  P. Joseph,et al.  Cognitive Functions in Chronic Locked-in Syndrome: A Report of two Cases , 1998, Cortex.

[82]  N. Miller,et al.  A relative afferent pupillary defect without any visual sensory deficit. , 1998, Archives of ophthalmology.

[83]  W. Willis,et al.  Branching and/or collateral projections of spinal dorsal horn neurons , 1999, Brain Research Reviews.

[84]  E. Welker,et al.  A comparative analysis of the morphology of corticothalamic projections in mammals , 2000, Brain Research Bulletin.

[85]  R. Guillery,et al.  Exploring the Thalamus , 2000 .

[86]  S Rozzi,et al.  Projections from the superior temporal sulcus to the agranular frontal cortex in the macaque , 2001, The European journal of neuroscience.

[87]  Nikos K. Logothetis,et al.  Motion Processing in the Macaque: Revisited with Functional Magnetic Resonance Imaging , 2001, The Journal of Neuroscience.

[88]  R W Guillery,et al.  Connections of higher order visual relays in the thalamus: A study of corticothalamic pathways in cats , 2001, The Journal of comparative neurology.

[89]  P H Schiller,et al.  Look and see: how the brain moves your eyes about. , 2001, Progress in brain research.

[90]  S. Schultz Principles of Neural Science, 4th ed. , 2001 .

[91]  G. Rizzolatti,et al.  The Cortical Motor System , 2001, Neuron.

[92]  H. Sakata,et al.  From Three-Dimensional Space Vision to Prehensile Hand Movements: The Lateral Intraparietal Area Links the Area V3A and the Anterior Intraparietal Area in Macaques , 2001, The Journal of Neuroscience.

[93]  R T Born,et al.  Visual processing: Parallel-er and Parallel-er , 2001, Current Biology.

[94]  Nikos K. Logothetis,et al.  Three-Dimensional Shape Representation in Monkey Cortex , 2002, Neuron.

[95]  E. J. Tehovnik,et al.  Differential effects of laminar stimulation of V1 cortex on target selection by macaque monkeys , 2002, The European journal of neuroscience.

[96]  R. Guillery,et al.  Thalamic Relay Functions and Their Role in Corticocortical Communication Generalizations from the Visual System , 2002, Neuron.

[97]  R. Guillery,et al.  The thalamus as a monitor of motor outputs. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[98]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.

[99]  Harald T Schupp,et al.  Affective blindsight: intact fear conditioning to a visual cue in a cortically blind patient. , 2003, Brain : a journal of neurology.

[100]  Paul Bach-y-Rita,et al.  Late postacute neurologic rehabilitation: neuroscience, engineering, and clinical programs. , 2003, Archives of physical medicine and rehabilitation.

[101]  L. Weiskrantz Mind-the gap, after 65 years: visual conditioning in cortical blindness. , 2003, Brain : a journal of neurology.

[102]  G. Schneider,et al.  Initial stages of retinofugal axon development in the hamster: evidence for two distinct modes of growth , 2004, Experimental Brain Research.

[103]  Z. Vidnyánszky,et al.  Light and electron microscopic analysis of synaptic input from cortical area 17 to the lateral posterior nucleus in cats , 1996, Experimental Brain Research.

[104]  Junying Yuan,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2022 .