Silicon technologies for arrays of Single Photon Avalanche Diodes

In order to fulfill the requirements of many applications, we recently developed a new technology aimed at combining the advantages of traditional thin and thick silicon Single Photon Avalanche Diodes (SPAD). In particular we demonstrated single-pixel detectors with a remarkable improvement in the Photon Detection Efficiency in the red/nearinfrared spectrum (e.g. 40% at 800nm) while maintaining a timing jitter better than 100ps. In this paper we discuss the limitations of such Red-Enhanced (RE) technology from the point of view of the fabrication of small arrays of SPAD and we propose modifications to the structure aimed at overcoming these issues. We also report the first preliminary experimental results attained on devices fabricated adopting the improved structure.

[1]  Angelo Gulinatti,et al.  Large-area low-jitter silicon single photon avalanche diodes , 2008, SPIE OPTO.

[2]  Angelo Gulinatti,et al.  High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array , 2010, Biomedical optics express.

[3]  S. Cova,et al.  New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration , 2012 .

[4]  M. Ghioni,et al.  An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies , 2012, 1301.2090.

[5]  S. Weiss,et al.  Detectors for single-molecule fluorescence imaging and spectroscopy , 2007, Journal of modern optics.

[6]  A. Tosi,et al.  Two-Dimensional SPAD Imaging Camera for Photon Counting , 2010, IEEE Photonics Journal.

[7]  A. Cheng,et al.  Single-molecule detection and spectroscopy in point-like geometries ( a ) Point-like excitation and detection , 2012 .

[8]  Angelo Gulinatti,et al.  A 2-GHz Bandwidth, Integrated Transimpedance Amplifier for Single-Photon Timing Applications , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[9]  W. Brockherde,et al.  100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  Edoardo Charbon,et al.  A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter , 2011, 2011 IEEE International Solid-State Circuits Conference.

[11]  S. Cova,et al.  SPADA: single-photon avalanche diode arrays , 2005, IEEE Photonics Technology Letters.

[12]  T. Jovin,et al.  Spectrally Resolved Fluorescence Lifetime Imaging Microscopy , 2002 .

[13]  A Gulinatti,et al.  Avalanche current read-out circuit for low jitter parallel photon timing. , 2013, Electronics letters.

[14]  Paul Bã ¼ rger Silicon Vlsi Technology Fundamentals Practice And Modeling , 2016 .

[15]  Ivan Rech,et al.  Multipixel single-photon avalanche diode array for parallel photon counting applications , 2009 .

[16]  Angelo Gulinatti,et al.  Improving the performance of silicon single-photon avalanche diodes , 2011, Defense + Commercial Sensing.

[17]  Angelo Gulinatti,et al.  A 48-pixel array of single photon avalanche diodes for multispot single molecule analysis , 2013, Photonics West - Optoelectronic Materials and Devices.

[18]  Antonino Ingargiola,et al.  Photon-Timing Jitter Dependence on Injection Position in Single-Photon Avalanche Diodes , 2011 .

[19]  M. Ghioni,et al.  A New Approach to Optical Crosstalk Modeling in Single-Photon Avalanche Diodes , 2008, IEEE Photonics Technology Letters.

[20]  S. Weiss,et al.  Silicon Photon-Counting Avalanche Diodes for Single-Molecule Fluorescence Spectroscopy , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[21]  Angelo Gulinatti,et al.  Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. , 2012, Physical review letters.

[22]  P.-A. Besse,et al.  Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes , 2005, IEEE Journal of Solid-State Circuits.

[23]  Francesco Panzeri,et al.  Planar silicon SPADs with improved photon detection efficiency , 2011, OPTO.

[24]  Angelo Gulinatti,et al.  Planar silicon SPADs with 200-μm diameter and 35-ps photon timing resolution , 2006, SPIE Optics East.

[25]  Angelo Gulinatti,et al.  New silicon technologies enable high-performance arrays of single photon avalanche diodes , 2013, Defense, Security, and Sensing.

[26]  M. Ghioni,et al.  Large-area avalanche diodes for picosecond time-correlated photon counting , 2005, Proceedings of 35th European Solid-State Device Research Conference, 2005. ESSDERC 2005..

[27]  Francesco Panzeri,et al.  SPAD array module for multi-dimensional photon timing applications , 2012 .

[28]  A. Gulinatti,et al.  Gigacount/Second Photon Detection Module Based on an $8\times 8$ Single-Photon Avalanche Diode Array , 2016, IEEE Photonics Technology Letters.

[29]  Angelo Gulinatti,et al.  35 ps time resolution at room temperature with large area single photon avalanche diodes , 2005 .

[30]  Angelo Gulinatti,et al.  Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation , 2012, Scientific Reports.

[31]  Angelo Gulinatti,et al.  A physically based model for evaluating the photon detection efficiency and the temporal response of SPAD detectors , 2011 .

[32]  Francesco Panzeri,et al.  Single-molecule FRET experiments with a red-enhanced custom technology SPAD , 2013, Photonics West - Biomedical Optics.

[33]  S. Cova,et al.  Progress in Silicon Single-Photon Avalanche Diodes , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[34]  Francesco Panzeri,et al.  Compact eight channel SPAD module for photon timing applications , 2011, Defense + Commercial Sensing.

[35]  Antonino Ingargiola,et al.  Optical crosstalk in single photon avalanche diode arrays: a new complete model. , 2008, Optics express.

[36]  Dan Dalacu,et al.  Observation of strongly entangled photon pairs from a nanowire quantum dot , 2014, Nature Communications.

[37]  A Gulinatti,et al.  Self-suppression of reset induced triggering in picosecond SPAD timing circuits. , 2007, The Review of scientific instruments.

[38]  Andrew D. MacGregor,et al.  Photon-counting techniques with silicon avalanche photodiodes , 1993, Photonics West - Lasers and Applications in Science and Engineering.