A modified update rule for stochastic proximity embedding.

Recently, we described a fast self-organizing algorithm for embedding a set of objects into a low-dimensional Euclidean space in a way that preserves the intrinsic dimensionality and metric structure of the data [Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 15869-15872]. The method, called stochastic proximity embedding (SPE), attempts to preserve the geodesic distances between the embedded objects, and scales linearly with the size of the data set. SPE starts with an initial configuration, and iteratively refines it by repeatedly selecting pairs of objects at random, and adjusting their coordinates so that their distances on the map match more closely their respective proximities. Here, we describe an alternative update rule that drastically reduces the number of calls to the random number generator and thus improves the efficiency of the algorithm.

[1]  Dimitris K. Agrafiotis,et al.  A Geodesic Framework for Analyzing Molecular Similarities , 2003, J. Chem. Inf. Comput. Sci..

[2]  Carla H. Lagorio,et al.  Psychology , 1929, Nature.

[3]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[4]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[5]  Gordon M. Crippen,et al.  Distance Geometry and Molecular Conformation , 1988 .

[6]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Dimitris K. Agrafiotis,et al.  Stochastic proximity embedding , 2003, J. Comput. Chem..

[9]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[10]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[11]  D. Agrafiotis,et al.  Combinatorial informatics in the post-genomics era , 2002, Nature Reviews Drug Discovery.

[12]  Jeanny Hérault,et al.  Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets , 1997, IEEE Trans. Neural Networks.

[13]  Huafeng Xu,et al.  A self-organizing principle for learning nonlinear manifolds , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Thomas Martinetz,et al.  Topology representing networks , 1994, Neural Networks.

[15]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .