A modified update rule for stochastic proximity embedding.
暂无分享,去创建一个
[1] Dimitris K. Agrafiotis,et al. A Geodesic Framework for Analyzing Molecular Similarities , 2003, J. Chem. Inf. Comput. Sci..
[2] Carla H. Lagorio,et al. Psychology , 1929, Nature.
[3] S T Roweis,et al. Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.
[4] Patrick J. F. Groenen,et al. Modern Multidimensional Scaling: Theory and Applications , 2003 .
[5] Gordon M. Crippen,et al. Distance Geometry and Molecular Conformation , 1988 .
[6] John W. Sammon,et al. A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.
[7] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[8] Dimitris K. Agrafiotis,et al. Stochastic proximity embedding , 2003, J. Comput. Chem..
[9] P. Groenen,et al. Modern Multidimensional Scaling: Theory and Applications , 1999 .
[10] J. Tenenbaum,et al. A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.
[11] D. Agrafiotis,et al. Combinatorial informatics in the post-genomics era , 2002, Nature Reviews Drug Discovery.
[12] Jeanny Hérault,et al. Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets , 1997, IEEE Trans. Neural Networks.
[13] Huafeng Xu,et al. A self-organizing principle for learning nonlinear manifolds , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[14] Thomas Martinetz,et al. Topology representing networks , 1994, Neural Networks.
[15] 宁北芳,et al. 疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .