New Investigated Lead Free Double Perovskite Materials Rb2libix6 (X= Cl, F, Br, I) for Optoelectronics and Solar Cell Applications Via First Principle Calculations

[1]  H. Albalawi,et al.  Study of Lead-Free Double Perovskites X2AgBiI6 (X = K, Rb, Cs) For Solar Cells and Thermoelectric Applications , 2022, Journal of Materials Research and Technology.

[2]  Tianyu Tang,et al.  A first principle comparison of arsenic-based double halide perovskite materials for photovoltaic and optoelectronic application , 2022, Journal of Solid State Chemistry.

[3]  R. Neffati,et al.  DFT study of optoelectronic and thermoelectric properties of cubic Ba2ZrMO6(M = Ce, Ti) double perovskites , 2022, Journal of Solid State Chemistry.

[4]  B. Haq,et al.  Theoretical study of electronic, magnetic, optical and thermoelectric properties of XMnO2 (X=Au, Ag, Cu) oxides by DFT , 2022, Journal of Solid State Chemistry.

[5]  H. Albalawi,et al.  First principle study of optoelectronic and mechanical properties of lead-free double perovskites Cs2SeX6 (X = Cl, Br, I) , 2022, Journal of Taibah University for Science.

[6]  A. Verma,et al.  Investigations of Lead Free Halides in Sodium Based Double Perovskites Cs2NaBiX6(X=Cl, Br, I): an Ab Intio Study , 2021, 3.

[7]  R. Ahuja,et al.  Cs2InGaX6 (X=Cl, Br, or I): Emergent Inorganic Halide Double Perovskites with enhanced optoelectronic characteristics , 2021 .

[8]  Yuezhan Feng,et al.  Research progress on hybrid organic–inorganic perovskites for photo-applications , 2020 .

[9]  M. Nazeeruddin,et al.  The Role of Goldschmidt’s Tolerance Factor in the Formation of A 2 BX 6 Double Halide Perovskites and its Optimal Range , 2020, Small Methods.

[10]  H. Labrim,et al.  Magnetic Properties of the Double Perovskite Bi2FeCrO6 , 2019, Journal of Electronic Materials.

[11]  H. Labrim,et al.  Magnetism and phase diagrams of the doubles perovskite Sr2 CrIrO6: Monte Carlo simulations , 2019, Physica A: Statistical Mechanics and its Applications.

[12]  Ruixia Yang,et al.  Recent Advances in Flexible Perovskite Solar Cells: Fabrication and Applications , 2019, Angewandte Chemie.

[13]  A. Laref,et al.  Ab-initio study of thermodynamic stability, thermoelectric and optical properties of perovskites ATiO3 (A=Pb, Sn) , 2018 .

[14]  T. Ma,et al.  First-principles study of electronic and optical properties of lead-free double perovskites Cs2NaBX6 (B = Sb, Bi; X = Cl, Br, I) , 2018, Journal of Physics and Chemistry of Solids.

[15]  Bin Yang,et al.  Lead-Free Silver-Bismuth Halide Double Perovskite Nanocrystals. , 2018, Angewandte Chemie.

[16]  Marcus W. Newrock,et al.  Computational screening of high-performance optoelectronic materials using OptB88vdW and TB-mBJ formalisms , 2018, Scientific Data.

[17]  S. M. Alay-e-Abbas,et al.  Systematic study of elastic, electronic, optical and thermoelectric properties of cubic BiBO3 and BiAlO3 compounds at different pressure by using ab-initio calculations , 2018 .

[18]  A. Benyoussef,et al.  Magnetic and electronic properties of double perovskite Lu 2 MnCoO 6 : Ab-initio calculations and Monte Carlo simulation , 2017 .

[19]  Shijing Sun,et al.  Synthesis and Characterization of the Rare-Earth Hybrid Double Perovskites: (CH3NH3)2KGdCl6 and (CH3NH3)2KYCl6. , 2017, The journal of physical chemistry letters.

[20]  D. Mitzi,et al.  Intrinsic Instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = Halogen) Double Perovskites: A Combined Density Functional Theory and Experimental Study. , 2017, Journal of the American Chemical Society.

[21]  O. Voznyy,et al.  High-Throughput Screening of Lead-Free Perovskite-like Materials for Optoelectronic Applications , 2017 .

[22]  R. Ahuja,et al.  Rational Design: A High-Throughput Computational Screening and Experimental Validation Methodology for Lead-Free and Emergent Hybrid Perovskites , 2017 .

[23]  Su-Huai Wei,et al.  Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation. , 2017, Journal of the American Chemical Society.

[24]  Fenghua Zhang,et al.  Synthesis and Properties of a Lead-Free Hybrid Double Perovskite: (CH3NH3)2AgBiBr6 , 2017 .

[25]  F. Giustino,et al.  Cs2InAgCl6: A New Lead-Free Halide Double Perovskite with Direct Band Gap. , 2016, The journal of physical chemistry letters.

[26]  A. Benyoussef,et al.  Magnetic properties of double perovskite Sr2RuHoO6: Monte Carlo Simulation , 2016 .

[27]  A. Walsh,et al.  Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells? , 2016, ACS energy letters.

[28]  F. Giustino,et al.  Band Gaps of the Lead-Free Halide Double Perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from Theory and Experiment. , 2016, The journal of physical chemistry letters.

[29]  F. Giustino,et al.  Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. , 2016, The journal of physical chemistry letters.

[30]  W. Windl,et al.  Cs2AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors , 2016 .

[31]  A. Lindenberg,et al.  A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. , 2016, Journal of the American Chemical Society.

[32]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[33]  A. Abbassi,et al.  Magnetic properties of the double perovskite Ba2NiUO6 , 2015 .

[34]  Sushil Auluck,et al.  Thermoelectric properties of a single graphene sheet and its derivatives , 2014 .

[35]  A. Benyoussef,et al.  Monte Carlo study of the double perovskite nano Sr2VMoO6 , 2013 .

[36]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[37]  E. Deligoz,et al.  The first-principles study on the LaN , 2008 .

[38]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[39]  G. Madsen,et al.  Automated search for new thermoelectric materials: the case of LiZnSb. , 2006, Journal of the American Chemical Society.

[40]  Hong‐ling Cui,et al.  First-principles calculations of elastic constants of c-BN , 2006 .

[41]  George S. Nolas,et al.  Recent Developments in Bulk Thermoelectric Materials , 2006 .

[42]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[43]  Jorge O. Sofo,et al.  Linear optical properties of solids within the full-potential linearized augmented planewave method , 2004, Comput. Phys. Commun..

[44]  H. Tributsch Solar Energy-Assisted Electrochemical Splitting of Water. Some Energetical, Kinetical and Catalytical Considerations Verified on MoS2 Layer Crystal Surfaces , 1977 .

[45]  H. Ledbetter,et al.  Elastic Properties of Metals and Alloys, I. Iron, Nickel, and Iron-Nickel Alloys , 1973 .

[46]  O. Anderson,et al.  A simplified method for calculating the debye temperature from elastic constants , 1963 .

[47]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[48]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.