Application of the Pontryagin maximum principle to the time-optimal control in a chain of three spins with unequal couplings
暂无分享,去创建一个
Dominique Sugny | Steffen J. Glaser | Robert Zeier | S. Glaser | R. Zeier | D. Sugny | Léo Van Damme | L. V. Damme
[1] 48 , 2015, Slow Burn.
[2] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .
[3] B. M. Fulk. MATH , 1992 .
[4] D. Tannor,et al. Introduction to Quantum Mechanics: A Time-Dependent Perspective , 2006 .
[5] U. Boscain,et al. NONISOTROPIC 3-LEVEL QUANTUM SYSTEMS: COMPLETE SOLUTIONS FOR MINIMUM TIME AND MINIMUM ENERGY , 2004, quant-ph/0409022.
[6] M. Chyba,et al. Singular Trajectories and Their Role in Control Theory , 2003, IEEE Transactions on Automatic Control.
[7] D. D’Alessandro. Introduction to Quantum Control and Dynamics , 2007 .
[8] B. Piccoli,et al. Optimal Syntheses for Control Systems on 2-D Manifolds , 2004 .
[9] M. Levitt. Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .
[10] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[11] George M. Siouris,et al. Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.
[12] V. Jurdjevic. Geometric control theory , 1996 .
[13] G. Bodenhausen,et al. Principles of nuclear magnetic resonance in one and two dimensions , 1987 .
[14] Robin K. Harris,et al. Encyclopedia of nuclear magnetic resonance , 1996 .
[15] V. Krotov,et al. Global methods in optimal control theory , 1993 .
[16] J. W. Humberston. Classical mechanics , 1980, Nature.