Distinct Distances in Three and Higher Dimensions

Improving an old result of Clarkson, Edelsbrunner, Guibas, Sharir and Welzl, we show that the number of distinct distances determined by a set $P$ of $n$ points in three-dimensional space is $\Omega(n^{77/141-\varepsilon})=\Omega(n^{0.546})$, for any $\varepsilon>0$. Moreover, there always exists a point $p\in P$ from which there are at least so many distinct distances to the remaining elements of $P$. The same result holds for points on the three-dimensional sphere. As a consequence, we obtain analogous results in higher dimensions.